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ABSTRACT 

In this monograph, certain nonlinear systems of three differential equations are considered. It is as­

sumed that the nonlinearities entering into the system satisfy the generalized Hurwitz conditions. Sufficient 
conditions for stability in the whole and conditions for which the systems considered have periodic solu­
tions are a lso considered. Conditions are imposed on the parameters of the systems which are necessary 
and sufficient for stability in the whole for any nonlinearity. 

This work can be useful to specialists in the qualitative theory of differential equations and the theory 
of automatic control. 
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FOREWORD 

Beginning in 1949, many mathematicians became interested in the problem of Ayzerman. This problem 
consists of the following. 

A system of differential equations is given 

where b(xk) =fo,and f ( X k )  represents a function which is continuous in the interval - m < xk < + m, with 
X k  

f(0) = 0, such that for system (*) the fulfillment of the Hurwitz conditions is the negativeness of the roots of 
the characteristic equation (in which the coefficient of X k  in the first equation is a ,k  + b(xk)). It is asked 
whether the trivial solution xl  = x2 = . .. = x, = 0 is asymptotically stable' in  the whole (as,  obviously, i t  
would be for constant b(xk)). 

This question is completely solved for the case n = 2. In this case it  was shown that for certain akl, 
asymptotic stability in the whole of the solution x1 = x2 = 0 takes place independently of the supplementary 
properties of f ( X k ) .  However, in the presence of one such relationship among the a k l ,  there is asymptotic 
stability in the whole of the null solution only for certain supplementary conditions on the f(xk), which are 
accurately determined. However, i f  these supplementary conditions on f(xk) are not fulfilled, then there is a 
domain of stability bounded by motions which go to infinity as t + + w and as t + - w. These boundaries of 
the motion can be found with any degree of precision. Qualitative illustrations of the behavior of such sys­
tems are also studied and appear sufficiently simple. 

Thus, in the case of two equations, Ayzerman's system was well studied, and for such systems, sta­
bility in the whole for certain relations between the a k l  is destroyed by the presence of motions which go to 
infinity a t  both end points in time. It is noted that in the general case of a system of two equations, a 
Lyapunov function can be found which, while it does not sett le the stability question of the null solution, 
st i l l  eliminates the existence of a periodic solution. 

For a system of three differential equations, there are no Lyapunov functions in the general case. For 
systems of three equations of the Ayzerman type, only sufficient conditions for the global stability of the 
null solution were found, which were established on the basis  of Lyapunov function construction. 

'See the definition of asymptotic stability in the whole on page 7. 



First  considered in this monograph are such systems of three equations of the Ayzerman type where the 
matter of global stability of the null solution is established by more exact methods of analysis. Systems are 
also shown in which the global stability of the null solution is violated by the existence of periddic solu­
tions. These periodic solutions are discovered here by the properties of field direction which are qualita­
tively different from those which, until now, employed the establishment of the existence of periodic solu­
tions of three-equation systems. The reader is referred to the monograph itself for other interesting, 
distinguished points of its contents. 

The problems investigated in this work are difficult, and efforts must be turned to their solution. For 
the solution of these questions, the author applies new investigational methods which enable the discovery 
of the existence of periodic solutions and the matter of global stability of the null solution. Apparently, 
these new methods are a lso useful for examining other systems of differential equations. 

The author evidently concurs with the following statement made by P. L. Chebyshev concerning the 
words of A. M. Lyapunov: 

‘IT0 be engaged in easy, although also new, problems which can be resolved by well-known meth­
ods is worth nothing, and therefore every young scholar, if he already has some practice in the 
solution of mathematical problems, must try his skill on some serious problem which exhibits 
known theoretical difficulty. If 

The attentive reader will undoubtedly continue his interest in the investigations of V. A. P l i ss .  
Already in this monograph there are, possibly, prepared solutions to problems about important generaliza­
tions of the conditions for the existence of periodic solutions. Indistinctly, a conjecture on the monotonicity 
of the nonlinearity a t  infinity for the boundedness of a l l  solutions of the systems considered is evoked by 
the raising of a question or by the method of investigation (chapter V of the monograph). 

N. P. Yerugin 
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INTRODUCTION 

In this book, a special case of a system of three differential equations of the Ayzerman type (ref. 1) is 
studied. The problem as posed by Ayzerman is formulated in the following way. 

Given the system of linear differential equations: 

n n 

For given constants apj(pj = 1, 2, ..., n) and for any value F in some interval a < F < /3, let  a l l  the roots of 
the characteristic equation of system (1)have negative real parts. This is required to prove or disprove the 
following assertion. 

For any interval (a,p) for which, with a < F < p, the roots of the characteristic equation of 
system (1)sti l l  maintain negative real parts, and for any single-valued continuous function f(x) 
satisfying the conditions: 

axz  < f(x)x < /3xz for all  x f O 

f(0) = 0, 

and the system: 

n n 

at  i ts  unique equilibrium state,  which obviously corresponds to the origin of coordinates x1 = 

xz = ... - x, = 0, will have at  the origin a stable equilibrium state,  and the domain of attraction 

includes the entire phase space of the system; i.e. - w < xi < 0~ ( j  = 1, 2, . .., n). 

In the following, we will call the function f(x) the nonlinearity, and conditions (a) and (b) the general­
ized Hurwitz conditions. 

Ayzerman's problem has been resolved in a negative sense; that is, N. N. Krasovskiy (ref. 2) con­
structed an example in which the null solution of system (2) is not globally stable. However, thereis  st i l l  
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interest in  the following questions. For what values of the parameters apj entering into system (2) will the 
null solution of this system be globally stable for any nonlinearity satisfying the generalized Hurwitz condi­
tions? If the null solution of system (2) is not globally stable for any nonlinearity satisfying the generalized 
Hurwitz conditions, then what additional restriction on the nonlinearity is required for the null solution to be 
globally stable? For what values of the parameters apj and for what nonlinearities will the null solution not 
be globally stable? 

Answers to all these questions a re  available for systems of two differential equations of the Ayzerman 
type. We consider the system: 

""=ay -1- f ( x ) ,  cy-=Dx + cy, (3)d t  lit 

where a, b and c are constants, and the continuous function f(x) is single value and satisfies the general­
ized Hurwitz conditions: 

x [ f ( x )+	cx]<o, x [ c f ( x )-nbx] >0 
for x - f O a n d f ( O ) = O  (4) 

If c2+ ab  f 0, then, as shown by N. P. Yerugin (refs. 3,4,and 5), the null solution of system (3) is globally 
stable for any nonlinearity f(x) satisfying the generalized Hurwitz conditions (GHC) (4). N. P. Yerugin 
(ref. 5) proved that, for the null solution of system (3) to be globally stable in the case cz+ a b  = 0, i t  is 
sufficient that (5) be fulfilled: 

nbx) dx -

N. N. Krasovskiy (ref. 6) proved that condition (5) is also necessary for the global stability of the null solu­
tion of system (3) whenever c2+ ab  = 0. Reference 7 explains that for cz+ ab  = 0 a curve can be constructed 
bounding the domain of attraction for the point x = y = 0, when the null solution is not globally stable. But 
this monograph studies in detail the qualitative picture of the integral curves behavior inside the domain as 
well a s  outside i t s  boundaries. 

I. G. Malkin's work (ref. 8) shows that for system (3) under conditions (4) there always exis ts  a 
Lyapunov function in the form of "an integral of the nonlinearity plus a quadratic form of the coordinates of 
the phase space" (which, otherwise, does not always guarantee the global stability of the null solution). 
Therefore, two-equation systems of the Ayzerman type do not admit periodic motions different from the posi­
tion of equilibrium. Moreover, from (5) ,i t  follows that in the plane case of Ayzerman's problem, the resolu­
tion of the global stability problem does not depend on the nonlinearity behavior in  a limited portion of the 
real axis. Many authors (refs. 9-17, .and 35-40) studied different, special cases of three-differential­
equation systems of the Ayzerman type (a detailed summary of such works with the resulting equations is 
included in a survey.paper by N. P. Yerugin (ref. 18)). In all of these works, the authors attempted to 
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construct Lyapunov functions in  the form of an "integral of the nonlinearity plus a quadratic form," and with 
its help they obtained some sufficient conditions for global stability. 

In addition to  the cited references, the present work studies Ayzepnan-type systems of three differen­
tial equations. In system (2) it is assumed that k = 1, n = 3, and the nonlinearity f(x) satisfies the GHC. 
The basic problem solved in this work consists of the following: for what values of the parameters aii is the 
null solution of (2) globally s table  for any function f(x) satisfying the GHC? In other words, the problem is 
resolved for which a;j the place has  a positive answer on the question of Ayzerman's problem. For the case 
when n = 3, k = 1, this problem is completely solved; i.e., conditions are given which are necessary and 
sufficient for global stability with any nonlinearity. At the s a m e  time, a ser ies  of other questions are re­
solved in the work. For the special case aaZ+ aJ3= 0, a more detailed analysis is undertaken than in the 
general case aZ2+ a33f 0. 

Chapter I establishes a general theorem on the global stability of motion which is used in later dis­
cussions. 

The studied system is brought into a certain special form in chapter 11. In the s a m e  place, the GHC is 
written in a clear form, and various special cases are considered. 

Chapter I11 establishes several theorems on the general characteristics of the arrangement of the tra­
jectories of the system studied. In particular, i t  explains how, for certain supplementary conditions imposed 
on the coefficients aij, the solutions of system (2) are related to individual oscillating figures. 

A series of sufficient conditions are given in chapter IV for global stability for any nonlinearity satis­
fying the GHC. In those cases when global stability for any nonlinearity cannot be established, conditions 
are formulated to be imposed on the nonlinearity which are sufficient for global stability of the null solution. 

For the proofs of many theorems in chapter IV,Lyapunov functions are used in the form of an "integral 
of the nonlinearity plus a quadratic form of the sought-after functions." A method is given which permits 
establishing conditions necessary and sufficient for the existence in system (2) of a Lyapunov function of 
such special form. The theorem demonstrated in chapter I is used for the proofs of other theorems in chap-' 
ter IV. 

The special case aa2+ aJ3= 0 is specifically studied in chapters V and VI. Conditions sufficient for 
the boundedness of all the solutions of the system studied are formulated. For the fulfillment of these con­
ditions, the qualitative behavior of the trajectories is made more precise. In particular, the following alter­
native assertion is proven: for the conditions defined, either the null solution is globally stable or system 
(2) has a periodic solution. 

Chapter VI states  the conditions sufficient for the presence in system (2) of periodic solutions different 
from the equilibrium position. To prove that such solutions exist  in the system studied, a method is used 
which is different from the principle of the transformation of a linear element into itself used by A. A. 
Andronov and A. G. Mayer (ref. 19); the principleof the torus used by K. 0. Fridrichs (ref. 20), L. M. Bauch 
(ref. 21) and V. V. Nemytskiy (ref. 22); and the principle of transforming the entire space into itself used by 
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G. Colombo (ref. 34). (See also the survey paper of V. V. Nemytskiy (ref. 23) on the periodic solutions of 
systems of three differential equations.) 

Sufficient conditions aregiven in chapter VI1 for the absence of global stability in the case a,, +a,,fO. 
In this general case, instability can be realized by the appearance of periodic solutions as well as by the 
appearance of solutions going to infinity for the continual variation of all the sought-after functions (just as 
in the degenerate case of the Ayzerman pIane problem). 

In the conclusions, conditions are formulated which are necessary and sufficient for the global stability 
of the null solution of the system studied for any nonlinearity satisfying the GHC. 

For the completion of this work, invaluable help and assistance was extended by my teacher N. P. 
Yerugin, whom I warmly and sincerely thank. I give my deepest thanks to V. I. Smirnov for the extremely 
valuable references to my work. To V. P. Basov I express my deepest appreciation for reading the manu­
script and making a series of important critical remarks which were accepted for the ultimate preparation of 
the work for the printers. 
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Chapter I. A GENERAL THEOREM 

Section 1 

We consider the system of ordinary differential equations, 

dxs ­--Xs(xl, x2) . . . )x,) ( s - l , 2 ,  . . . I  n), 
, dt 

the right sides of which are  defined and continuous and satisfy the conditions for uniqueness of solutions 
for any real xl, x,, .. . , x,. In addition, we assume that 

X s ( 0 ,  0 , .  . ., 0 )  = o  ( s =  1, 2,.. . , It ) .  (1-2) 

We will say that the null solution of system (1.1)is globally stable i f  it is Lyapunov stable and if, along all 
solutions of system (1.1), the following condition holds: 

lim xs( t )= O (S = 1, 2,.. . n). (1.3):-.+-

By +(p, t )  we will designate that trajectory of system (1.1)which, for t = 0, passes  through thepoint p. 1 

Consider the hyperplane 

a,xl + a2x2+...+n,x,, = 0 (1.4) 

of the phase space. We say that trajectory +(p, t) of system (1.1)intersects the hyperplane (1.4) for t = t, i f  
instants of time, t o  < t ,  5 t, < t,, exist  such that on trajectory +(p, t )  the following conditions are fulfilled: 

and 

alxl +a+,+ ...+a,x, # 0 

'Throughout this book, $ appears in equations within the text while cp may appear in equations se t  apart 
from lines of text. Both symbols represent the s a m e  quantity. 
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for 

For this, the signs of the expression alxl -I-a,x, + ...+ anXn on the trajectory $(p, t) in the intervals [to, tl) 
and (t,, t3 are different. In other words, a t  the intersection the trajectory goes from one side of the hyper­
plane of (1.4) to the other. For this, the trajectory +(p, t )  can lie in the hyperplane (1.4) for a finite interval 
of t ime (if t ,  < t,), or have with i t  only one common point (if t, = t2). In both cases the point of intersection 
of the trajectory +(p, t) with the hyperplane (1.4) will be called the point $(p, tl). 

We have the following theorem. 

Theorem 1.1 

For the trivial solution of system (1.1) to -beglobally stable, i t  is necessary and sufficient for the fol­
lowing conditions to  be fulfilled: 

(1) The point (0, 0, ...,0) is an isolated equilibrium point of the system (1.1). 

(2) The equilibrium position (0, 0, ..., 0) is stable in the sense  of Lyapunov. 

(3) There exists a hyperplane L of the type (1.4) such that: 

(a) along any trajectory for which a T can be chosen such that for t > TI  the trajectory does not in­
tersect the hyperplane L, then xs + 0 (s = 1, 2, ..., n) for t + + m; 

(b) there exists a continuous function v defined onIy for points on the hyperplane L which has the 
qualities v(0, 0, ..., 0) = 0, ~ ( x , ,x,, ..., Xn) > 0 for (x,, x2, ..., xn)cL and (x,, xz, . .., X n )  4 (0, 0, ..., 0), 

v(xl, x2, . .., x,) + m for (xl, x,, . .., x,)eL and -9xf+ 00;

1=1 

(c) if a trajectory +(p, t )  of system (1.1) has a t  least two points in common with the hyperspace L, 
then the following is fulfilled: let t ,  and t, be two instants of time for which the points +(p, t,) and +(p, t2) 
lie in the hyperplane L; then, if t, < t,, v(+(p, t,)) > v(+(p, tz)). 

This theorem with a short proof is in reference 24; here, a detailed proof is shown. 

Proof 

1. Sufficiency 

Because of condition 3a, i t  is sufficient to prove only the following fact. Any trajectory +(p, t )  which 
possesses the quality that increasing sequence of instants of t ime can be chosen, 
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t,, t,, tg, .* .  + + m, (1.7) 

such that the points $(p, tk) are points of intersection of the trajectories $(p, t)  with the hyperplane L, goes 
toward the origin of coordinates for t + m. We will now prove this. 

By virtue of condition 3c, all $(p, tk) lie in the domain: 

Domain (14,because of condition 3b, is bounded. Therefore, according to the Bolzano-Weirstrasse 
theorem, a sequence of points $(p, tk) can be found which converge a t  point q; Le., 

In consequence of (I.”), point q is an a-limit point for trajectory $(p, t). We prove that if a t  the instant of 
time r,  trajectory $(p, t) intersects hyperplane L, then: 

As a result of condition 3c of the theorem, the sequence v($(p, tk)) is decreasing. Moreover, because of the 
continuity of function v and relation (1.9), we have 

(1.11) 

for all k. Resulting from (1.7), an i can be found such that t i  > r; and, necessarily, due to condition 3c, 

Therefore, (1.10) follows from (1.12). 

We will now prove that q coincides with the origin. Indeed, assume to the contrary that q f (0, 0, ..., 
0), and consider a trajectory $(q, t)  of system (1.1). For $(p, t), this trajectory is an  o - l imi t  point. Also 
assume at  f irst  that a t* > 0 exists such that for t = t*, $(q, t )  intersects hyperplane L. From condition 3c 
of the theorem we have 

Therefore, by using the theorem on integral continuity and the definition of the intersection of a trajectory of 
system (L.1) with the hyperplane of type (1.4) which was stated above, we can choose 7 such that trajectory 
$(p, t) intersects hyperplane L for t = r and v($(p, r)) < v(q). But this contradicts inequality (1.10). Con­
sider now the case when trajectory $(p, t)  does not intersect hyperplane L for t > 0. Then, from condition 
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3a, +(q, t) -f (0,0, ..., 0) for t + m, and, consequently, the origin of the coordinates is the w-limit point for 
trajectory +(p, t). But from here, because of condition 2 of the theorem, +(p, t )  goes to  the position of 
equilibrium (0, 0,. .., 0), which contradicts q f (0, 0, ..., 0) being the o-limit point for +(p, t).  The con­
tradictions obtained show that point q coincides with the origin, and, consequently, trajectory +(p, t) has as 
its w-limit point the Lyapunov stable position of equilibrium (0, 0, ..., 0). Therefore, trajectory +(p, t) 
goes to the origin as t -f m. 

The sufficiency of the conditions has  been proven. 

2. Necessity 

Let the trivial solution of system (1.1)be globally stable, and take an  arbitrary hyperplane of type 
(1.4). Then conditions 1,  2 and 3a areobviously fulfilled. Now only the existence of a function v which 
satisfies the conditions of 3c and 3b must be proven. As proved by Ye. A. Barbashin and N. N. Krasovskiy 
(ref. 25), from the conditions of the theorem, there exists a continuously differentiable, positive definite, 
infinitely large function w, the derivative of which, by virtue of the equations of system (l.l),is negative 
definite. It is not difficult to see,  then, that the function w satisfies all  the conditions of the theorem, i f  it 
is considered as (I function of the points on hyperplane L. Thus, the theorem is proven. 
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Chapter 11. SOME CERTAIN TRANSFORMATIONS 

Section 2 

In the present work, a system of three differential equations of the Ayzerman type is studied (ref. 1). 
The system considered has  the following form: 

W e  assume that 

In the following, we will assume that 

The case A:, + A i l  = 0 is of no interest to  us  for the following reason. If a12= al, = 0, then system (2.1) is 
integrable by quadratures. If AZ1= A,, = 0, but at2+ a:, d 0, then system (2.1) can be written in  the follow­
ing way: 

where n1 and n2 are constants combined in an appropriate way. However, i t  is seen immediately that every 
one of the points lying on the line x = 0, a,,y, + a13z1= 0 is an equilibrium position for system (2.4) and, 
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consequently, a lso for system (2.1). But in this work i t  is assumed that function f,(x) satisfies the GHC, 
and, as a result system (2.1) cannot have equilibrium positions different from the origin. Without losing 
generality, we can assume that 

The generality is not lessened by this assumption since the case f 0 is brought into the case A,, f 0 by 
a simple relabeling of the variables. Further, we will assume that 

'l13
-#=--.A31 (2.6)
a,, A21 


In the case when inequality (2.6) is not fulfilled, system (2.1) was investigated by N. N. Krasovskiy (ref. 6), 
who demonstrated necessary and sufficient conditions in this case for the global stability of the null 
solution. 

For function f,(x), we will assume that i t  is defined and continuous, and satisfies the conditions for a 
unique solution for all  real x. In addition, we will assume thut f,(x) satisfies the GHC. 

On system (2.1) the following transformation of variobles is performed: 

Bemuse of.inequality (2.6), the transformation is nonsingulai. Note that this transformation shows 
only some of the variables of the transformation proposed by N. N. Krasovskiy in reference 6. In the new vari­
ables, system (2.1) has the following form: 

We assume that 



A-  

Then system (2.7) takes the following form: 

dX-dt = y --f(X) 

9-z -ex- df ( x )= dt 

dz_­
dt -- ax -bf ( x )  

We. assumed that function f,(x) satisfies the GHC,but at the s a m e  time, function f(x) also satisfies 
this condition. Considering f(x)/x as a constant quantity, we have for the characteristic equation of sys­
tem (2.8): 

= O  


or 

Therefore, the GHC for system (2.8) will have the following form: 

f(0) = 0, (2.9) 

(2.10)fM>o for x # 0,
X 

fa+b-->O for x # 0, (2.11) 

df*)+(~-,b)~ 
f ( x )  -a>U for x # 0. (2.12) 
X 

System (2.8) with conditions (2.9)-(2.12) will a lso be investigated in the following. For this, the spe­
cial case d = 0 will be subjected to somewhat more detailed analysis than will the general case d f 0. Con­
cerning this, in the case d = 0 we make the following substitutions. From the GHC, (2.10)-(2.12), it follows 
that c > 0 for d = 0. Having noted this, we se t  

y = vzy,, z=czp, t =  * (2.13) 
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1I.C _ - - . 1  

. .  

Then system (2.8) takes on the form 

dX 1 dy, 
- 2 ,  -x ;

lit2 = y, - - f ( x ) ;  a;­?fc ­

(2.14) 

Here we set 

Dropping the index 2, we arrive at the following system of differential equations: 

dYclr -, - - f (x) ;  	-= - -x ;  nt  - .- ax - Of(*<). (2.15)
d t  lit 

As follows from relations (2.9)-(2.12), the GHC for system (2.15) has the form below: 

f(0) = 0, (2.16) 

f'.')__ >o for ,x += 0, (2.17)
X 

afb. f (4> O  for x =/= 0 (2.18) 
0 

(2.19) 

Depending on parameters a,  b, c and d of system (2.8), the GHC (2.9)-(2.12) for function f(x) is written in 
different ways. In connection with this, an entire series of different cases arises. W e  assume a t  first that 
d = 0; i.e., first we consider system (2.15). Then inequalities (2.17), (2.18) and (2.19) yield the following 
cases: 

(1) O < b < l , a > O  

f O > z  for x # 0.X I - b  (2.20) 

(2) O < b < l , a = O  

--->of 
X
(4 for x # 0. (2.21) 



(3) O < b < l , a < O  

mo>- n 'for x # 0. 
X 

(4) b = 0, a > 0 

-f (XI > for x # 0.
X 

(5) b < 0, a > 0 

f(4 ' a  for x # 0.] i f - b < F < - b  

(6) b = l , a < O  

for x + 0.
X 

(7) b > l ,  a < O  

- E < .fM < 
6 X 1 - b  for x f 0. 

Now let d d 0. In this case w e  set:  

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

These designations have sense when (c - b)* + 4ad 2 0. Inequalities (2.10), (2.11) and (2.12) are brought to 
the following different cases: 

(8) d < 0 ,  b > 0, A > max 

XA <f(l) < B  for x $1 0. (2.27) 

(9) d < O , b > O , A = - c = O
b 

A < + < B  for x # 0. (2.28) 

(10) d < 0, b > 0, B > -
b 

> max (A, 0) 

(2.29) 
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(11) d < 0,b = 0, A > 0 
A < ~ < Bf(4 

(12) d < 0,b < 0, 0 < A  < B < - a
b 

' A <  7f ( x )<B 

(13) d<0,b < 0 ,  O < A < B = - a
b 

A < yf ( X ) <  B 

(14) d<0,b < O , O < A < - g < B
b 

A<- f(x)<- U 

(15) d > 0,b > 0, (c - b)' + 4ad < 0 

f ( x )  > --a-
X b 

for x+O. 
(2.30) 

.for x # 0. 
(2.31) 

for -x+0. (2.32) 

for ' X  # 0. 
(2.33) 

for x # 0. (2.34) 

(16) d > 0,b > 0, A > max 

-f ( x )  > A  
X 

(17) d > O , b > O , A = - g > O
b 


.__- A 
.Y 

(18) d > 0 ,  b > O ,  A = - g = O
b 

__ > Af 

X 

for .'c =+0. 
(2.35) 

for x =/ 0. 
(2.36) 

for x + O .  
(2.37) 

(19) d > 0, b > 0, -	9 > max (A,0)
b 

' aE>-, for x $. 0. 
X (2.38) 

(20) d > 0 ,  b > 0 ,  B > - C > O
b 

a f ( -d- b < - y - < B  for x .# 0. (2.39) 

16 



-- 

(21) d > 0, b = 0, A > 0 
f (xj- > A  for x # 0. (2.40)X 

(22) d > O , b < O , O < A < - c
b

A < F < - ~x + o .a for 
(2.41) 

Note that this classification of the cases was proposed by A. P. Tuzov in reference 12. But here, only 
the number of cases and the designation of the coefficients are changed. 

A consideration of cases 15 and 19 shows that system (2.8) is brought to a system called indirect regu­
lation by a simple trarkformation of variables and of function f(x). This system is completely discussed in 
reference 40 which proves that the null solution of system (2.8) is globally stable for any nonlinear function 
f(x) satisfying the GHC, (2.34), i f  the conditions of cases 15 and 19 are fulfilled. Reference 12 shows that 
the null solution of system (2.8) is globally stable for any f(x) satisying the GHC, (2.21), if the conditions 
of case  2 are fulfilled. Therefore, cases 2, 15 and 19 are excluded from consideration in the following. 

Combine inequality (2.11) with inequality (2.12); then, after dividing by f(x)> 0, we obtain
X 

f ( X IC L - ~+ c  > G  for x = +  0. (2.42) 

We will prove that for a l l  cases except 1.3and 17, a number H >  0 can be found such that a stronger inequal­
ity will take place 

d -f	(XI -E c x for x =/= 0. (2.43)X 

Let the GHC for system (2.8) be written in the form 

(2.44) 

For this, p can be a nonproper number. Inequality (2.43) could not be fulfilled if, for fo= h or f o r m  = p,
X X 

inequalities (2.11) and (2.12) a t  some time become equalities. 

As a direct investigation will show, this is possible only in the conditions of cases 9, 13, 17 and 18. 
In cases 9 and 18 we will prove that inequality (2.43) is fulfilled for all  f(x) satisfying the GHC. As seen 
from inequality (2.18), i t  is sufficient for case 9 to prove 

dB + c > 0. (2.45) 

But from the conditions of case 9, dB = - c + b; therefore, (2.45) follows and, with it,  (2.43). 
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In case  1.8 it i s  obviously sufficient to prove that c > 0. But from the conditions of case 18, it follows 
that -(c - b) + I C  - b( = 0;consequently, c 2b > 0,and thus (2.43) also follows. 

Therefore, inequality (2.43) cannot be fulfilled in cases 13 and 17. 
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Chapter 111. THEOREMS ON THE GENERAL CHARACTERISTICS O F  THE BEHAVIOR 
OF THE TRAJECTORIES OF THE SYSTEM STUDIED 

This chapter will consider the general characteristics of the behavior of trajectories of system (2.8) 
when conditions (2.10), (2.11) and (2.12) are fulfilled. By +(p, t), we will designate that trajectory of sys­
tem (2.8) which, for t = 0, passes  through point p of the phase space. Let E be some set of points of the 
phase space; then, by +(E,t),  we will designate the set of those trajectories of system (2.8) which for t = 0 
passes through points of s e t  E. 

Section 3 

We describe the field of the directions determined by system (2.8) for conditions (2.10), (2.11) and , 

(2.12). It is seen immediately from system (2.8) that for y - f(x) > 0, x increases along all motions of syster 
(2.8); but for y - f(x) < 0, x decreases with increasing time t. For z > cx + df(x), y increases along all the 
motions of system (2.8); but for z < cx i-df(x), y decreases with increasing time. As is seen from inequality 

(2.11), the derivative *has a sign opposite the sign of x. Therefore, for x > 0, z decreases along all thedt 
motions of (2.81, but for x < 0,z increases with increasing time.- . . .  

The trajectories of (2.8) for y > 0 intersect the plane x = 0, crossing from the half-space x < 0 to the 
half-space x > 0; while for y < 0, the trajectories of (2.8) intersect the plane x = 0, crossing, with in­
creasing time, from the half-space x > 0 into the half-space x < 0. For y = 0, the trajectories of (2.8) are 
tangent to the plane x = 0. Let point p lie on axis Oz, and let its z component be positive. Then trajectory 
$(p, t) of (2.8) is tangent to the plane x = 0 at t = 0, and for t f 0, but sufficiently small, the trajectory lies 
in the half-space x > 0. If point p lies on the negative Oz axis, then trajectory +(p, t)  is tangent to the sur­
face x = 0 a t  point p in such a way that for t f 0, but sufficiently small, $(pl t) lies in the half-space x < 0. 
Thus, the z-axis component on the plane x = 0 experiences a maximum for y > 0 and a minimum for y < 0 
along all motions of system (2.8). For y = 0, the z-axis component on plane x = 0 does not have an extremur 
along the trajectories of (2.8). 

We will now describe the behavior of the trajectories of system (2.15) in the neighborhood of plane ­

z - x = 0. For this we will consider x 2 0 since for x < 0 the situation will obviously be the same. Let 

. - ~  

point p lie in plane z - x = 0. If a t  point p, y 2 f(x), then trajectory +(p, t) intersects plane z - x = 0 for 
t = 0, crossing from the half-space z - x > 0 into the half-space z- x < 0. 
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If a t  point p, y - f(x) < 0, but 

then trajectory $(p, t) a t  point p intersects plane z - x = 0 as well as crossing from the half-space z - x > 0 
into the half-space z - x < 0. In both these cases ,  the y component of trajectory $(p, t) intersecting the y 
axis assumes a maximum a t  point p. 

Now, a t  point p, let  x 20, z - x = 0, y - f(x) < 0 and 

Then trajectory +(p, t )  intersects plane z - x = 0, crossing from half-space z - x < 0 into half-space z - x > 0. 
The ordinateof trajectory +(p, t) takes on a minimum. But if y - f(x) < 0 and 

then trajectory +(p, t) is tangent to plane z - x = 0 a t  point p. 

Now let point p lie on the cylindrical surface y - f(x) = 0, for which i t  is assumed, as before, that x 1 0 
at point p. If a t  point p, z - cx - df(x) > 0, then +(p, t )  intersects the surface y - f(x) = 0 a t  point p, cross­
ing from domain ly - f(x) < 01 into domain {y - f(x) > 01. (Here, and in the following, inequalities enclosed 
in braces designate that domain of the phase space where the inequality is fulfilled.) In this case,  a t  point 
p,  the abscissa of the trujectory +(p, t) assumes a minimum. If at  point p, z - cx - df(x) < 0, then trajectory 
d (p ,  e )  intersects surface y - f(x) = 0, passing out of domain {y - f(x) > 01 into domain ( y  - f(x) < 01. For 
this case,  the abscissa of trajectory +(p, t )  a t  point p has a maximum, 

Section 4 

At this point we formulate a theorem on the behavior of trajectories of system (2.8). To prove this 
theorem, w e  need to prove several lemmas. 

Lemma 3.1 

Let pdx > 0, z < 01. Then trajectory +(p, t) for t > 0 intersects surface x = 0. 

Proof 

W e  assume that pdx > 0, y - f(x) > 0, z < 01. Then we prove that, with increasing time, trajectory 
4(p, t) of system (2.8) intersects surfacey - f(x) = 0 and goes into domain (x> 0, y - f(x) < 0,z < 01. 
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Indeed, in domain {x > 0, y - f(x) > 0, z < 0)the x component along all the motions of (2.8) increases, while 
the y and z components decrease with increasing time. In the domain considered, y on trajectory +(p, t )  is 
bounded since i t  decreases in this domain and is positive. But then, in this domain on trajectory +(p, t), x 
is also bounded. 

Indeed, dividing the first equation of system (2.8) by the second, we obtain 

Following from inequalities (2.l l) 'and (2.42), z - cx - df(x) 5 z o  < 0 on trajectory +(p, t)  for t > 0 and, thus, 
+(p, t )dx > 0, y - f(x) > 0, z < 0). Therefore, from the boundedness of y in  the domain considered, the 
boundedness of x also follows. 

W e  prove that the z component is also bounded on trajectory +(p, t )  in domain {x > 0, y - f(x) > 0, 
z < 01. To verify this, divide the third equation of system (2.8) by the second, thus yielding 

Since x is bounded on trajectory +(p, t) in the domain considered, and z decreases with increasing time in 
this domain, because of inequality (2.11), then the right s ide of equality (3.5) is also bounded. Thus, from 
the boundedness of y, the boundedness of z also follows. W e  assume now that trajectory +(p, t)  remains in 
domain ]x > 0, y - f(x) > 0, z < 0)for all t 20. Then +(p, t )  is bounded for t 20. However, in our domain 
all the coordinates depend monotonically on time; therefore, trajectory +(p, t)  for t + + m goes to some point 
of phase space other than the origin. It is known (ref. 26) that such a point can be only an equilibrium posi­
tion of our system. Yet system (2.8) has  only one equilibrium position, considered to be the point (0, 0, 0). 
Therefore, the assumption that trajectory +(p, t)  for t > 0 remains in domain {x > 0, y - f(x) > 0, z < 01, is 
absurd. Consequently, trajectory +(p, t )  for t = t ,  > 0 intersects the surface y - f(x) = 0 and goes into 
domain (x > 0, y - f(x) < 0, z < 0). 

W e  prove that trajectory +(p, t)  for all t > t ,  cannot lie in domain (x > 0, y - f(x) < 0, z < 0). On the 
contrary, we assume that +(p, t )  lies in this domain for a l l  t > t,. We show then that trajectory $(p, t )  is 
bounded for t > t,. Indeed, x in this domain decreases and is positive; consequently i t  is bounded. We as­
sume that the z component along trajectory +(p, t )  decreases without bound with increasing time. Dividing 
the third equation of system (2.8) by the first, yields 

From this equality, i t  follows that z on trajectory #(p, t )  can be unbounded only on the condition that y 
on +(p, t )  is bounded for t > t,. But then, as seen from equality (3.5), z is also bounded on $(p, t )  for t > t,. 
Consequently, the assumption about the unboundedness of z on trajectory $(p, t )  for t > t ,  is preposterous 
and means the z component on trajectory #(p, t)  is bounded for t > t,. From equality 
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(3.7) 

because of the monotonic decrease of y, and the boundedness of z and x on trajectory +(p, t )  for t > t,, it 
follows that y cannot be unbounded. Thus, if trajectory +(p, t) for t > t remains in domain (x >0, y - f(x)<0, z <O], 
then it is bounded. But all the coordinates along trajectory +(p, t )  in domain {x > 0, y - f(x) < 0, z < 01 vary 
monotonically. Since z along trajectory +(p, t) in this domain decreases with increasing time, then conse­
quently, there is present an equilibrium position belonging to system (2.8) different from x = y = z = 0. This, 
an mentioned above, is not true. But this trajectory cannot intersect plane z = 0, since in domain (x > 01, z 

decreases with increasing time along all  motions of system (2.8). Trajectory +(p, t) also cannot intersect 
surface y - f(x) = 0, for, as stated in the previous paragraph, trajectories of system (2.8) for z - cx -df(x)<O 
intersect the surface y - f(x) = 0, crossing from domain (y - f(x) > 0) into domain (y - f(x) < 01, but not for 
the reverse. Consequently, trajectory +(p, t )  must intersect surface x = 0 for t = T, > t,. This also proves 
the lemma. 

Remark 

Obviously, the assertion of the lemma is true also when pdx > 0, z = 0) and when pdx = 0, z 5 0, y>O]. 

The following lemma is proved in a precisely analogous manner. 

Lemma 3.2 

If pc(x < 0, z > 01, then $(p, t) ,  for t > 0, intersects plane x = 0. 

L e m m a  3.3 

Assume that in system (2.8) the conditions of cases 13 or 17 are not fulfilled. Assume further that 
pe{x > 0, y - f(x) > 0). Then trajectory $(p, t) of system (2.8) for t > 0 intersects surface y = f(x) and goes 
into domain (x > 0, y - f(x) < 0). 

Proof 

A s  a result of the lemma's  assumption, inequality (2.43) is valid. Assume again that pe(x > 0, y - f (x)> 
0, z - cx - df(x) > 0). In this domain, x and y increase and z decreases with increasing time t. 

A s s u m e  the opposite of the assertion of the lemma; i.e., that for all t > 0, $(p, t)c(x > 0, y - f(x) > 0). 
We will prove then that $(p, t )  for t > 0 intersects the plane z - x x  = 0, where x is the number calculated in 
inequality (2.43). Indeed, x and z on trajectory $(p, t) in domain (x > 0, y - f(x) > 0, z - x x  > O ]  are bounded 
since z in this domain decreases with increasing time. We will prove that the y component in this domain is 
also bounded on +(p, t).  To show this, we turn to equality 
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Following from inequality (2.11), the value of the fraction standing on the right side of this inequality 
can approach zero only for x = 0. Since on +(p, t )  for t 20 in domain (x > 0, y - f(x) > 0, z - x x  > 01, we 
see that x > x(p) and, as mentioned above, x on +(p, t )  in this domain is bounded for t 10. We also see that 
trajectory +(p, t) remains in domain (x > 0, y - f(x) > 0, z - x x  > 01. Therefore, from the boundedness of z,  
the boundedness of y a lso follows in this domain. Thus, trajectory +(p, t) is bounded for t 1 0 in domain 
(x > 0, y - f(x) > 0, z - x x  > 01. Consequently, +(p, t )  leaves this domain for increasing time. Indeed, as­
sume to the contrary that +(p, t)E{x > 0, y - f(x) > 0, z - x x  > 01 for all t > 0. But then, because of the 
boundedness, trajectory +(p, t) has a-limit point g. Since, in the domain considered, x increases along 
+(p, t),  i t  is then clear that x(q) > 0. Moreover, resulting from the increase of z along +(p, t), l im  z(t) = 

t++m 

z(q). However, from x(q) > 0, i t  follows that for t > 0, and sufficiently small, z(+(q, t)) < z(q). But then, 
from the quality of the w-limit set ,  a r > 0 can be found such that z(+(p, r ) )  < z(q). 

The last  inequality contradicts the monotonicity of function z(+(p, t ) )  and relation z(+(p, t ) )  + z(q) for 
t + + M.  The contradiction obtained also proves that +(p, t )  leaves domain (x > 0, y - f(x) > 0, z - x x  > 01 
for t > 0. But trajectory +(p, t )  does not intersect the surface y - f(x) = 0 by assumption; consequently, for 
t = t , ,  +(p, t )  intersects plane z - x x  = 0 and goes into domain (x > 0, y - f(x) > 0, z - x x  < 0, z > 01. In 
this domain, y and z are bounded on trajectory +(p, t )  since they decrease and are positive. W e  will prove 
that x i s  also bounded on +(p, t )  in this domain. Indeed, resulting from the decreasing of z and the increas­
ing of x, and inequality (2.43), 

z - cx - df(x) < 1, < 0, (3.9) 

is fulfilled in this domain, where 1, is some constant. Consequently, from the boundedness of y in domain 
{x > 0, y - f (x)  > 0, z - x x  < 0, z > 0) and from equality (3.4), the boundedness of x results in the domain 
considered. Thus, in our domain, all  coordinates on trajectory +(p, t )  are bounded and monotonically varying 
with time. Therefore, trajectory +(p, t) cannot lie in this domain for all t > t ,  and, consequently, for in­
creasing t,  leaves it. Trajectory +(p, t )  cannot intersect plane z - x x  = 0 since,  in domain (x > 0, y - f(x) > 
0, z - x x  < 01, xincreasesalongq5(p, t ) ,  and z decreases with increasing t. Also, +(p, t )  cannot intersect 
plane z = 0 since x increases for y > f(x). Therefore, for t = t, > t,, trajectory +(p, t) intersects either plane 
z = 0 or surface y - f(x) = 0. In the second case,  the lemma is proved. If, however, +(p, t )  for t = t, inter­
sects  plane z = 0, then, in this case,  i t  crosses into domain (x > 0, y - f(x) > 0, z < 01. But then, as shown 
in the proof of lemma 3.1, for t = t, > t,, trajectory +(p, t)  intersects surface y - f(x) = 0 and goes into 
domain (x > 0, y - f(x) < 01. This a lso concludes the proof of lemma 3.3. 

Remark 

Obviously, the assertion of the lemma is true also when pc(x 2 0, y - f(x) >- 0, z - cx - df(x) > 0). 

Lemma 3.4 

Assume that in system (2.8) either condition 13 or 17 is not fulfilled. Assume further that pc(x < 0, y ­
f(x) < 01. Then trajectory +(p, t )  for t > 0 intersects surface y - f(x) = 0 and goes into domain (x < 0, y ­
f(x) > 01. The proof of this lemma is analogous to the proof of lemma 3.3. 
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Lemma 3.5 

If for all t L 0, $(p, t )  is contained in c{x > 0, y - f(x) 20, z > O!, then $(p, t) goes to  the origin as 
t + m. 

Proof 

Since, along +(p, t), the x and z components decrease with increasing time, they are bounded on this 
trajectory for t 20. 

Assume that 

9, = max f(x) for O 5 x L x(p). (3.10) 

Then for t 20, trajectory $(p, t )  goes into domain {x > 0, y - f(x) 5 0, z > 01,and, therefore, the y component 
is bounded on i t  above g,. Besides, from equality (3.7),from the boundedness of x and z and from the mono­
tonic decrease of x along trajectory +(p, t )  with increasing time, we see that the y component is bounded on 
+(p, t )  for t 20 also from below. Thus, trajectory +(p, t )  is positively stable in the sense of LaGrange and, 
as a consequence, has an o-limit point q with coordinates x,, yo, z,. 

We will prove that x, = yo = z, = 0. Indeed, since for t 20, z decreases monotonically along trajectory 
+(p, t )  with increasing time, there must be fulfilled the relations 

z(+(p, t))  L z, for t 20 (3.11) 

and 

lim z(+(p, t))  = z,,. (3.12) 
t-

Point q is the a-limit for trajectory +(p, t) ,  lying inside or on the boundary of that domain in which trajec­
tory +(p, t )  lies for t 20, and, consequently, q& 2 0, y - f(x) 5 0, z L 01. 

Since $(q, t) is an o-limit trajectory for +(p, t) ,  then, for all  t ,  

We assume now that point q does not coincide with the equilibrium position (0, 0, 0) of system (2.8). From 
the preceding reasoning, i t  is easy to see that for any t ,  > 0 

Since +(q, t )  is a n  w-limit trajectory for +(p, t ) ,  as a consequence of inequality (3.13) there exists a r > 0 
foi which there is fulfilled the inequality 
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The las t  inequality contradicts inequality (3.11). The contradiction obtained also proves that point q coin­
cides with the origin. As a result, trajectory #(p, t) has point x = y = z = 0 as i t s  unique a-limit point. 
Thus, the lemma is proved. 

Lemma 3.6 

If for t 2 0 

then $(p, t) goes to the origin for t + + m. The proof is analogous to the proof of l emma 3.5. 

Theorem 3.1 

Assume that in system (2.8) conditions of either case 13or 17are not fulfilled; then any positive half-
trajectory of system (2 .8) ,  wholly lying in one of the half-spaces x ? 0 or I: 5 0, goes to the origin. 

Proof 

Assume for definiteness that for t 10 the relation$(p, t)c{x>O{isfulfilled. Resulting from lemma 3.1, 
+(p, t)c(x 1 0, z > 0) (provided p does not coincide with the point (0, 0,  0), which w e  will also assume for 
the proof of this theorem). Two cases  are possible: either such a T exists that for t > T, c,b(p,t)E{x> 0, y - f(x)5 0, 
z > O ) ,  or such a T does not exist. In the first case,  the proof is concluded by a simple reference to lemma 
3.5. Turning to the second case, by virtue of lemma 3.3, there can be found a 

8, > 0 such that +(p, 8 , ) ~ l x> 0, y - f(x) < 0, z > OI. 

Since, from the suppositions i t  cannot occur that +(p, t)c(x > 0, y - f(x) < 0, z > 01 for a l l  t 2 e,, then a T~ > 8 ,  
can be found such that on trajectory +(p, t )  

From the reasoning in section 3, i t  is clear that for this 

Z ( 7 J  - x X(TJ L 0 (3.16) 

on trajectory +(p, t). 

According to lemma 3.5, w e  wil l  be able to choose such a number 8, > r l  + 1 that +(p, 8,)c(x > 0, y ­
f(x) < 0, z > 01. For this e,, just as above, a T, > 8, can be found so  that 
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Continuing this process further, we can choose a sequence rl, r2, ... of instants of t ime such that Q > 
Q-, + 1 and 

on trajectory $(p, t). 

Since trajectory +(p, t )  for t 2 0 lies in the half-space x > 0, then along this trajectory, z decreases 
with increasing time for t 2 0, as follows from condition (2.14). Therefore, we can write 

on trajectory +(p, t). Also from (3.19), we obtain 

on $(p, t) .  Assume now that 

g ,  = m a x f ( x )  for 0 -<x < :,1 z ( p ) .  (3.22) 

From (3.18), (2.10), (3.21) and (3.22), there results the following inequality: 

(3.23) 

From inequalities (3.21), (3.22) and (3.23), the sequence of points +(p, Q) is bounded, and, consequently, it 
has a limit point q with coordinates xo,yo, zo. 

Since Q > T k - ,  + 1, lim Tk = W ,  and, consequently, point q is an w-limit point for trajectory +(p, t). We 
k-tm 

will prove that point q coincides with the origin. Indeed, along trajectory +(p, t ) ,  z monotonically decreases 
with increasing time and, therefore, there must be fulfilled by the relations 

z(+(p, t ) )  > zo  for t Z 0 (3.24) 

and 

limz($(p, t)) = zo. (3.25) 
t+W 

Trajectory +(q, t )  is an a-limit for +(p, t). Therefore, for a l l  t ,  $(q, t )dx  20, z 2 0). Assume that q does 
not coincide with the origin; then, obviously, a t ,  > 0 can be found for which 
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Since point +(q, tl) is an o-limit for trajectory +(p, t), an instant of time t, > 0 can be found such that 

This inequality contradicts inequality (3.24). The contradiction obtained also proves that point q coincides 
with the origin. Analogously, i t  is proved that any other a-limit point of trajectory +(p, t) coincides with 
the origin. As a consequence, +(p, t) goes to this equilibrium position for t --t + m. Thus, the theorem is 
proved. 

Section 5 

In this section, we will investigate system (2.15) where parameters a and b are subjected to the condi­
tions of cases 1 and 4; i.e., we will consider that the relations 0 5 b < 1 and a > 0 are fulfilled. Assume 

c = c [1 - b '  From inequalities (2.20) and (2.23) there must follow 

Assume that 

Then inequality (3.28) has the form 

The following lemma is true. 

Lemma 3.7 

f(x)-> c for x f 0. 
X 

f(x) = cx + a(x). 

-a(x) > o for x + 0. 
X 

(3.28) 

(3.29) 

(3.30) 

Assumethat the inequalities are fulfilled: 0 5 b < 1, a > 0, and c 21. Let pc(x 2 0, y = f(x) > 01. Then 
trajectory +(p, t )  for t > 0 intersects plane x = 0. 

Proof 

If z(p) _< 0, then the assertion of this lemma follows directly from lemma 3.1. Let z(p) > 0. Assume to 
begin with that pc(x 20, y - f(x) > 0, z - x > 01. As was proved for lemma 3.3, trajectory +(p, t) intersects 
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plane z - x = 0 for t = t ,  > 0, whereupon inequality (3.9) will be fulfilled on this trajectory. Thus, i f  peIx20, 
y - f(x) > 0, z - x > 01, a t ,  20 exists such that on $(p, t) the following relations are fulfilled: 

z(t,) - x(tJ 5 0, (3.31) 

But if pdx > 0, y - f(x) > 0, z - x _< Oj, then assume t, = 0; thus relations (3.31) and (3.32) on trajectory 
$(p, t )  will a lso be fulfilled. Because of inequality (3.28), on $(p, t) thereis fulfilled the inequality 

Assume that 

f(x(t,)) - cx(t,) = h > 0. 

Then from (3.33) we obtain 

y(t,) ? cx(t,) + h (3.34) 

on trajectory $(p, t). Returning now to equality (3.8), we will rewrite i t  in the form 

Therefore, from relation (3.30) and the definition of the number c, 

<rL x - z _­
dx - cx + ba ( x )  Cx + bo ( x )  

From conditions b ? 0, c 2 1 of the last  equality, the relation 

* < l  (3.35)dz 

is valid for x > 0 and z > 0. Let T > t ,  be an arbitrary number so  that for tc(t,, T) on trajectory $(p, t ) ,  
x > 0, z > 0 results. Then on trajectory $(pl t) for tc(t,, T),  inequality (3.35) is fulfilled. By integrating 
this inequality along trajectory $(p, t )  from t ,  to TI we obtain 

or 



Therefore, from relations (3.31), (3.34) and c 2 1 we obtain 

From this relation the inequality 

must be fulfilled s ince for y > 0 the trajectories of system (2.15) intersect the plane x = 0, passing from the 
half-space x < 0, into the half-space x > 0. 

Now we will prove that +(p, t)  intersects the plane z = 0 for t > t ,. Indeed, we asser t  to the contrary 
that this is not so; Le., we assume that for t > t,, z($(p, t)) > 0. However, (3.37) causes x(+(p, t)) > 0 for 
all t > t ,  (since for T we can then choose any number larger than t,). From theorem 3.1 trajectory +(p, t )  
goes to the origin for t -f 00 in this case, which is impossible because of relations (3.36) and z(+(p, t ) )  > 0 
for t > t,. The resulting contradiction proves that $(p, t )  intersects plane z = 0 for t = t, > t,. For this i t  is 
clear that x(+(p, t)) > 0 for kit,, t,). From lemma 3.1, it can be asserted that trajectory +(p, t )  intersects 
plane x = 0. Thus, the lemma is proved. 

Assume that 0 _< b < 1, a > 0, c 21 and pdx 20, y - f(x) > 0). Then, because of lemma 3.7, trajectorx 
+(p, t )  intersects plane x = 0 for t > 0. Let tp > 0 be the first instant after t = 0 that trajectory +(p, t )  inter­
sec ts  the plane x = 0. Then from the s a m e  proof as for lemma 3.7, i t  is seen that on trajectory +(p, t)  the 
relations 

are fulfilled. Lemma 3.8 is proved analogously. 

Lemma 3.8 

If 0 _< b < 1, a > 0, c L 1 and,pr{x 5 0, y - f(x) < 01, trajectory +(p, t) intersects plane x = 0 for t > 0. 
From lemmas 3.7 and 3.8, the following theorems are consequences. 

, Theorem 3.2 

Let  the inequalities 0 5 b < 1, a > 0 and c 2 1 be fulfilled and let  point p lie on plane x = 0. Thus, 
trajectory +(p, t) of system (2.15) intersects plane x = 0 for t > 0. 

Theorem 3.3 

Assume that inequalities 0 _< b < 1, a > 0, c 2 1 are  fulfilled. Let point p, different from point x = y = 

z = 0, lie on plane x = 0, let  t, > 0 be the first instant after t = 0 that trajectory +(p, t) intersects plane 
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x = 0, and let t, > t ,  be the first instant after t ,  of the intersection of $(pl t )  with plane x = 0. Then one of 
two things is possibIe: 

(1) either 

and then 

( 2 )  or 

and then 

Section 6 

In this section we will formulate a lemma of later importance. Consider two trajectories of system 
(2.8); +(p,, t )  and +(p,, t). Let  the initial points p, and p2 have coordinates xp', yp) ,  z y )  and xp) ,  y(,o), 

z p )  correspondingly. Assume that the relations 

(3.39) 

(3.40) 

are fulfilled. For this i t  is assumed that one of the inequalities in (3.40) is fulfilled in the strict sense. 
From (3.39) and (3.40) follow the inequalities 

We will consider trajectories +(pl, t )  and +(p2, t )  on those segments from points p1 and p2 to the first 
intersections with the surface y = f(x) after t = 0 (and if such does not occur, then to infinity). On this sec­
tion, the x components of trajectories +(pl, t )  and $(p2, t )  are monotonic functions of time t. Therefore, the 
y and z components of trajectories +(pl, t )  and +(p2, t )  are single-valued, continuous functions of the x com­
ponents on the part considered. We will write y and z on trajectories +(pl, t )  and +(p2, t)  as functions of x 
for which we will provide the coordinates of trajectory $(pl, t)  with index 1 and coordinates of trajectory 
+(p,, t )  with index 2. The following lemma is true. 
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Lemma 3.9 

For trajectories +(pl, t) and $(p2, t) the inequalities 

(3.42) 

(3.43) 

occur for all  those x > xv)  for which both trajectories belong to the segments considered. 

Proof 

We take arbitrary x1 > x?), such that for XE(X?),x,], trajectories q5(pl, t)  and q5(p2,t )  do not intersect 
surface y - f(x) = 0, and we will prove that inequalities (3.42) and (3.43) are fulfilled for all  XE(X(IO),x,]. By 
this, the lemma wil l  a lso be proved. 

From relation (3.40), both inequalities (3.42) and (3.43) are fulfilled for xe(x\"), ~ ( 1 0 )+ 61, where 6 is a 
sufficiently s m a l l  number. Indeed, by virtue of continuity, they are fulfilled also for xe[x(,o), x?) + 61 from 
inequalities (3.42) and (3.43) which are strictly fulfilled for x = x'p) (and such exists because of the assump­
tion). But then, because of equations (3.6) and (3.7), the second of these inequalities is also fulfilled for 
X�(X?), x?) + 61. 

Assume now, in spite of the lemma's assertion such an x*e[x(10) + 6, xl] exists,  that for x = x*, either 
inequality (3.42) or inequality (3.43) is violated, and for xc(x?) + 6, x*) both are fulfilled; i.e., x* is the 
first  point a t  which one of inequalities (3.42) and (3.43) is violated. However, inequality (3.43) cannot be 
violated for x = x* since 

dzl dZ, for x G (x\') + 8, x+) ,  (3.44)
->dxd x  

This follows from inequality (3.42) which, by assumption, is fulfilled for xe(x(10)+ 6, x*). 

Inequality (3.42) also is not violated for x = x*. Indeed, assume 

Y,(X*) = Y2(X*). (3.45) 

Then, since inequality (3.43) is fulfilled for X E ( X ~ )+ 6, x*), i t  must be fulfilled also for x = x* by virtue of 
the theorem on uniqueness; in this case,  resulting from (3.7), w e  have 

Because of the continuity, the las t  inequality is fulfilled also for x,  sufficiently c lose to  x*, but less 
than it. This contradicts equality (3.45), and the contradiction obtained also proves the lemma. 
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Chapter IV. ON THE GLOBAL STABILITY OF MOTION 

In this chapter, we will give several sufficient conditions for the global stability of the null solution of 
system (2.8). To do this,  in many cases we will construct a Lyapunov function for the system in the form 
“integral of the nonlinearity plus a quadratic form of the coordinate of the phase space.” Many authors 
(refs. 9-16) have constructed Lyapunov functions in this way for systems of the Ayzerman type in special 
cases. 

Section 7 

This section will show one very simple example which in some cases enables a Lyapunov function to 
be constructed for system (2.8) of the special type pointed out above. Yet in some other cases i t  proves the 
absence of Lyapunov functions of such a type. We will prove the following. 

Lemma 4.1 

If the quadratic form 

‘o= W ( X , ,x,, .. . , x , ~ )+ 5 F x i ,  

where F is a constant number and W is a quadratic form of the variables xl, x2, ... , x, with coefficients in­
dependent of F, is positive definite for any Fc(y, a), then the function 

VI= W ( . q J24, .  ..J x,) +p Jf (x)dX (4.2) 
0 

is also positive definite for any continuous f(x) satisfying the conditions 

Proof 

Choose an arbitrary continuous function f(x) satisfying the conditions of (4.3). We will prove that a t  
any point (xl0,zZO,..., xno)f (0, 0, ..., O), function (4.2) is positive; the lemma is also proved by this. If 
Xko = 0, then 

32 



and our assertion is proved. Let Xko  f 0, and multiply inequality (4.3)by x and integrate from 0 to xko, thus 
obtaining 

Assume that 

From (4.4)i t  follows that Fd(y,  a), but then from hypothesis 

The lemma is proved. 

Suppose now that in functions v and v,, the quadratic form W has coefficients dependent only on the 
coefficients aij of systems ( l ) and(2 ) .  Designate by 8 and i r ,  the derivative on time of the functions v and v, 
taken because of the differential equations of systems (1)and (2) respectively. The following lemma is 
true. 

Lemma 4.2 

If for e v ~ yFe(y, a), 8 _< 0, then for every continuous f(x) satisfying conditions (4.3),t, _< 0. 

Proof 

W e  will take an arbitrary continuous function f(x) satisfying conditions (4.3)and show that by the 
hypotheses of the lemma, f, _< 0 a t  any fixed point (xio; xz0, ..., xno) of the phase space: this proves the 
lemma. If X k o  = 0,then the lemma proceeds from the fact that f ( X k o )  = Fxko = 0 and from the forms 8 and f,. 

But let  X k o  # 0,and then assume .Fo= -.f(xk0 )  

xk o 
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From conditions (4.3) i t  follows thatan F,E(Y,6), but then ir _< 0 for xi = xio(i  = 1, 2, ..., n). Therefore, 
the assertion of the lemma also results from equality f(xko)= F$ko and from the forms ir and ir,. 

From lemmas 4.1 and 4.2, i t  follows that if there exists for system (1)a Lyapunov function of type / 
(4.1) for any Fe(y, a), then for system (2) there a lso exists a Lyapunov function for any continuous f(x) 
satisfying conditions (4.3), and this function has the form (4.2). 

Further, i t  is clear that if i t  is impossible to choose for system (1) a function v of type (4.1) having a 
negative derivative ir for all Fe(y, a), then also for system (2) there exists no Lyapunov function of the type 
"integral of the nonlinearity plus a quadratic form of the coordinates of the phase space." 

Thus, the question of the existence and the construction for system (2) of a Lyapunov function of the 
special type chosen above is seen to be a question of the existence and construction for system (1)of a 
Lyapunov function of type (4.1). 

Section 8 

This section will investigate cases  1, 4, 5,  and 7 introduced in chapter 11. Assume a s  previously that 

. ac = -
1 - 6 '  (4.6) 

System (2.15) then takes on the following form: 

j ,  = y - cx - a(x),9 = z - x, i = - cx - ba(x), (4.7) 

where a(x)was introduced by equality (3.29). Function a ( x )  obeys the foIlowing inequaIities: 

In cases 1, and 4 (i.e., for 0 5 b < 1, a = 0), 

"0 for X # O ;> O  
X 

In case 5 (i.e., for b < 0, a > 0), 

a (s) C
O < y < - -b for x += 0; (4.9) 

1n.case 7 (i.e., for b > 1, a < 0), 

- - < F < Oc "(4 for x f 0 .  
(4.10)b 
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In these cases for system (4.7), we start to look for a Lyapunov function of the type "integral of the 
nonlinearity plus a quadratic form in the coordinates of the phase space." For this case,  including system 
(4.7), consider the system 

where the quantity A obeys the s a m e  inequality that the expression a(x)/x depends on in the case con­
sidered. 

Substitute in systems (4.7) and (4.11) the following change of variables: 

x1= c% - cy + z, y1 = z 

x1­x=-------*Y , + C Z l  
.c2 + 1 

Then systems (4.7) and (4.11) will have the forms 

and 

For system (4.14), look for a Lyapunov function in the form 

- x, z1 = y, (4.12) 

(4.13) 

(4.14) 

(4.15) 

where the numbers bik and p are, for the present, not defined. W e  require that the derivatives of this func­
tion on time, taken by virtue of the differential equations of system (4.14) for any A satisfying suitable in­
equalities, be nonpositive: 

(4.16) 
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- . .. .. .... .... 

Since ir must be negative definite for any A satisfying appropriate inequalities, then obviously the 
function v must be negative definite a lso for A = 0. From (4.16), it then follows that 

b23 = 0, b,, = b33r (4.17) 

- b12C + b,, = 0, - b,, - b13c = 0. (4.18) 

From equality (4.18), it follows that 

b,, = b,, = 0. (4.19) 

From (4.15), (4.16), (4.17) and (4.19), we obtain 

(4.20) 

and 

(4.21) 

From the conditions of the cases considered, i t  is seen that c > 0. Therefore, following from (4.21), i t  must 
be true that b,, 20. For b,, = 0 and a sufficiently smal l  (AI,  function ir ,  as it  is not difficult to prove, is the 
sign variable; consequently, i t  must be true that b,, > 0. Since function v is of interest to us only to within 
a positive constant multiplying factor, then i t  can be taken that bl, = 1. Then the function ir can be written 
in the form 

For x, = 0, the coefficients for Ax must be proportional to x since in the opposite case �or small A, function 
0 will change sign. Therefore, 

Thus, we obtain: 

PbaB= - c ( 1 - b )  - (4.23) 
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Substituting the found value of b,, into Q and changing x, - y, + cz,  to  (c' + l)x, we obtain 

The condition for negativeness of the las t  function consists of 

1-pA +pcA2 >/ 7 [ ( c ~+6 )  -+f ]'A3. 

Consider now case 7; i.e., the case when b > 1,  a < 0. According to (4.10), in this case 

- i < A < O .  

(4.24) 

(4.25) 

(4.26) 

Cancelling A in inequa1,ity (4.25) for A < 0, we obtain 

-p -+ pcA Q 1 [ ( c p+ 6 )  ++]'A. 

Inequality (4.27) is strictly fulfilled for A = 0 and for any p > 0. Therefore, if we choose p > 0, then 

(4.27) 

inequality (4.27) will be fulfilled for sufficiently small IAI. W e  now seek to choose p > 0 such that for 
A = - c h  inequality (4.27) will a lso be fulfilled. If such a p is found, then inequality (4.27) will be ful­
filled for any A satisfying inequality (4.26) since in (4.27) A enters linearly. Thus, assuming in (4.27) that 
A = - c h ,  we obtain 

P p ( c 3  + b )b + cp
- 4 7 - p <  C 4-$1 

or 

(4.28) 

Since c > 0 and b > 0, the preceding inequality must be fulfilled only for the following condition: 

p = C(C' + b). (4.29) 

It is obvious that p chosen in this way is positive, and, as a result, inequality (4.27) for such p is fulfilled 
for any A�(- c/b, 0), as is not difficult to see in the strict sense. Then for any x and x, satisfying inequality 
x i  + xz  > 0 and for any A�(- c h ,  0), we see that ir < 0. 

Thus, in case 7 for system (2.15) there exists a Lyapunov function of the type 

(4.30) 
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where the variables x,, y,, and z, come from formula (4.12). Derivative 0 ,  of function v, on time, taken by 
virtue of the differential equations of system (2.15), will be negative definite as a consequence of lemma 
(4.2). From the proof of lemma (4.2) it follows that 0,  < 0 for x z  + x: > 0. Now it  is easy to  prove the fol­
lowing assertion. 

Theorem 4.1 

In case 7 for b > 1, a < 0, the null solution of system (2.15) is globally stable for any function f(x) 
satisfying the generalized Hurwitz conditions of (2.16) and (2.26). 

Proof 

We will prove first that function v, of equality (4.30) is positive definite. This is certainly not diffi­
cult to achieve with the assistance of Sylvester's criterion and lemma 4.1. However, we will take advantage 
of another way. Suppose that a t  a certain point p f (0, 0, 0) of the phase space, v,(p) 5 0. From the type of 
the function v,, i t  follows that x(p) f 0. But then, as proven above, ir,(p) < 0. Consequently, for a l l  t > 0 on 
path $(p, t )  of system (2.15), the result is v1 < 0. But then path $(p, t )  cannot intersect plane x = 0 since 
on this plane, v, ? 0. Moreover, $(p, t )  cannot go to the origin since vl(O, 0, 0) = 0. Thus we obtain a con­
tradiction with theorem 3.1. This contradiction proves that function v, is positive definite. Thus, a s  a con­
sequence of the fact that ir < 0, the null solution of system (2.15) in the case investigated is stable in the 
sense of Lyapunov. 

We prove now that all  the conditions of theorem 1.1 are fulfilled. For the hyperplane L figuring in con­
dition 3 of this theorem, choose x = 0; then because of theorem 3.1, condition 3a will be fulfilled. Instead 
of function v figuring in condition 3b of theorem 1.1, we take the function 

i.e., that function from the substitution of x = 0 into v,. Condition 3b of theorem 1.1 will be fulfilled in this 
case. A s  mentioned above, x f 0 for i r ,  < 0. But from the reasoning in section 3, i t  follows that any path 
$(p, .t) of system (2.15) in which p f (0, 0, 0) will intersect plane x = 0 only at isolated points. Therefore, 
it follows that the last  condition of theorem 1.1 in our case is also fulfilled, and a reference to this theorem 
thus completes the proof. 

Consider now case 5 for b < 0, a > 0. According to (4.9), in this case there is necessarily fulfilled the 
inequality 

O < A < - - F .C 
(4.31) 

Dividing inequality (4.25) by A > 0, we obtain 

(4.32) 
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In the case considered, inequality (4.32) 
quired to find a p < 0 such that for A = -

is fulfilled for sufficiently smal l  A i f  p < 0. Therefore, it is re­
c/b,  inequality (4.32) would be fulfilled. In (4.32), instead'of A, 

we substitute - c/b; then we obtain 

E? + 6 

or 

-.Eb [(c'.+ 6 )  -51P 40. (4.33) 

Since in the case considered, c > 0, and b < 0, then the las t  inequality can be fulfilled only for the con­
dition 

p = C(C' + b). (4.34) 

Thus, if c2+ b < 0, then for any x and x,, satisfying the inequality x2 + x: > 0, and for any Ae(0, - c h ) ,  
i t  results that ir < 0. If cz+ b > 0, then there exists no such a p for which ir would be nonpositive for any 
Ae(0, - c/b).  But if cz+ b = 0, then i t  must follow from inequality (4.32) that p = 0, and the function v de­
generates into v = -x:.l 

2 

Theorem 4.2 

If the conditions of case 5 are fulfilled (Le., if b < 0, a > 0) and if in addition c 2 +  b < 0, then the null 
solution of system (2.15) is globally stable for any function f(x) satisfying the generalized Hurwitz condi­
tions (2.24). 

The proof of this theorem coincides with the proof of theorem 4.1. For this, just as in the proof of 
theorem 4.1, it is necessary to use function v, defined in  equality (4.30) and theorem 1.1. 

Consider now cases 1 and 4; i.e., the cases when 0 _< b < 1, a > 0. According to (4.8) in these cases 
we will have 

A > 0. (4.35) 

Dividing inequality (4.25) by A > 0, we obtain inequality (4.32). Inequality (4.32) is fulfilled for sufficiently 
smal l  A only for the condition that p < 0; on the other hand, for p < 0 this inequality cannot be fulfilled for 
sufficiently large A. Therefore, in the case considered, inequality (4.32) can be fulfilled neither for all 
A > 0 nor for every real p. 

Thus, from the reasoning shown, i t  follows that for system (2.15) in cases 1 and 4 (i.e., for 0 5 b < 1, 
a > 0) and in case 5 for cz+ b > 0 (i.e., in the case when b < 0, a > 0 and cz+ b > 0) it is impossible to find 
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a positive function of the type "integral of the nonlinearity plus a quadratic form in the sought after vari­
ables," which would have a negative derivative on time for any f(x) satisfying the generalized Hurwitz con­
ditions. 

Section 9 

Theorem 4.3 

If the conditions of case 3 are fulfilled, i.e., if a > 0, b < 0, and if  besides these 

C' + b = 0, (4.36) 

then the null solution of system (2.15)is globally stable for any f(x) satisfying the generalized Hurwitz 
conditions (2.24). 

Proof 

As w a s  shown above in the case considered, system (2.15), by the substitution of variables (4.12),is 
brought into form (4.13). For this case,  in consequence of condition (4.36),the first equation of this system 
is not dependent on the other two. Therefore, along all  solutions of system (2.15) in the case considered, 
there is fulfilled the equality 

X, = x,,e-ct, (4.37) 

where x,, is the value of x, for t = 0 on the solution considered. From formula (4.37)it follows that any 
solution of system (2.15), even if having one point in the plane x, = 0, remains in this plane also for all  t ,  
for which this solution is defined. 

We will prove that any solution lying in plane x, = 0 goes to the origin for t + + m. The behavior of 
these solutions on plane x, = 0 as follows from (4.12), (4.13)and (4.36)is described by the following system 
of two differential equations: 

dt  (4.38) 


Into the functions considered, we introduce the coordinates of the phase space 

u=zy12+ p + c ( l + c Z )  (4.39)1 1 

. o  
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The derivative of this function is equal to  

0 = (1+ c2)[x, - x + ca(x)la(x) (4.40) 

by virtue of the differential equations of system (4.13),a s  is easily verified. But for those solutions of 
system (2.15)which lie wholly on surface x1 = 0, from (4.40)we have 

+ = (1+ cVca(x)  - x]a(x). (4.41) 

W e  will prove that theorem 1.3 of N. P.flerugin's work (ref. 3)is applicable to the solutions lying in 
plane x1 = 0. Indeed, as mentioned above, the origin is unique and asymptotically stable in the 
sense of Lyapunov as an equilibrium point. Consider the straight line (x, = 0, x = 01 passing through the 
origin. This line, following from the reasoning of section 3,contacts the field of direction of system (2.15) 
only at  the point x = y = z = 0. Therefore, if the solution of system (2.15)lying on plane x1 = 0 has a 
bounded polar angle for t > 0, then for sufficiently large t i t  does not intersect the line [x, = 0, x = 01 and, 
consequently, plane x = 0. But then from theorem 3.1, this solution goes to the point (0, 0, 0) for t + + m 

and, consequently, is bounded for t > 0. Further, since the origin is a unique equilibrium point of system 
(2.15),any periodic motion lying on plane x, = 0 must enclose the origin and, accordingly must intersect 
line [x, = 0, x = 01. However, from the generalized Hurwitz conditions (4.9),from (4.36)and from (4.41),i t  
follows that for x f 0, ir < 0 on those solutions which lie on the plane x1 = 0. Thus, on the plane x,  = 0, we 
will find in the conditions of theorem 1.3 of the work of Yerugin (ref. 3),and by virtue of this theorem, that 
any solution lying on the plane x, = 0 goes to the origin for t + + W. 

W e  will also prove that a l l  the remaining solutions of system (2.15)possess this quality. Consider an 
arbitrary trajectory +(p, t )  of system (2.15). If path +(p, t )  does not intersect plane x = 0 for t > T, where T 
is sufficiently large, then from theorem 3.1 we see that this path goes to the origin for t + m. Suppose, 
therefore, that there exists an infinite sequence of intersection points of the path +(p, t) with the plane 
x = 0. 

Let t = 0, t = t,, t = t,, ... be instants of the intersection of path +(p, t )  with plane x = 0. For this we 
will suppose that 0 < t ,  < t, < ... and that for tc(tk, tk+,), +(p, t )  lies in one of the half-spaces x > 0 or 
x < 0; i.e., suppose that 0, t,, t,, ... are a sequence of points of intersection of path +(p, t) with plane 
x = 0. 

W e  will prove that 

for tc[tk, tk+l], where function v is defined by equality (4.39). For definiteness, we will suppose that for 
tc(tk, tk+,), +(p, t) lies in the half-space x > 0; i.e., suppose that y(+(p, tk)) ?? 0,and i f  z(+(p, tk)) 5 0,then 
y(+(p, tk)) > 0. Consider first that case when z(+(p, tk)) 5 0. As seen from lemma 3.1,path $(p, t) for in­
creasing time intersects surface y - f(x) = 0 for t = 7,�(tk, tk+,). On the time interval tc[tk, r,], y along path 
$(p, t )  decreases; consequently, y(+(p, rl)) < y($(p, tk)). Therefore, from (3.29),(4.9)and (4.36)i t  follows 
that 
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(4.43) ’ 

As was shown for the proof of lemma 3.1, path $(p, t)  intersects the surface y - f(x) = 0 only crt one time on 
interval tk 5 t _< tk+l, and consequently x($(p, t))  has  on the time interval tk _< t 5 tk+l the greatest value a t  
t = rl. Hence, a l so  from (4.43), i t  follows that for tC[tk, there is fulfilled the inequality 

Since from the definition of v, y($(p, tk)) 5 d2v($(p, tk)), then (4.42) also follows from (4.44). 

We go now to the case when z($(p, tk)) > 0. In this case ,  s ince i t  fo lhws  from the proof of lemma 3.3, 
path +(p, t )  for t = T1c(tk, tk+l) intersects plane z - x = 0,and thereupon for t = T $ [ T ~ ,  tk+l) surface y - f(x) = 

0 and crosses over into domain {y - f(x) < Oj (so that T~ is understood to be the first instant after t = r1  of the 
existence of an intersection of $(p, t)  with the surface y - f(x) = 0). We will prove that for t�[tk, rl] on path 
$(p, t )  there is fulfilled the inequality 

(4.45) 

Indeed, if  for all tc[tk, rl), the inequality 

(4.46) 

is fulfilled, then (4.45) also follows. But i f  inequality (4.46) is violated on the interval [tk, T ~ ) ,then be­
cause i t  is fulfilled for t = tk, a t*�(tk, T ~ )must exist  such that 

(4.47) 

As is easily seen from the proof of lemma 3.3, y($(p, t ) )  increases for tdtk,  T ~ ] ;therefore, for tc(t*, T,) 
we will have 

(4.48) 

Since for te(tk, tk+l), with increasing time, z decreases along path $(p, t) ,  there is fulfilled the relation 

(4.49) 

From equalities (3.7) and (3.29), from the GHC (4:9), from’the conditions of (4.36) of the theorem 
proved, and from (4.48), the inequality 
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is fulfilled for te(t*, T,) on path +(p, t). Therefore, from (4.49) i t  a lso follows that 

g<1. 

By integrating this inequality along path +(p, t )  for t* _< t _< r ,  and using equality (4.47) and inequality 
(4.49), we obtain (4.45). Since +(p, t)  intersects plane z - x = 0 only at  one time on the t ime interval tk _< 
t _< T ~ ,then y(+(p, t ) )  on this interval has  the greatest value for t = T,, and consequently inequality (4.45) is 
fulfilled for t&k, T,]. Since y = f(x) = cx + a(x) because t = r2 on trajectory +(p, t) ,  then from inequality 
(4.45) and condition (4.9) i t  follows that 

(4.50) 

W e  will show that for te[tk, tk+,] the inequality 

is fulfilled. Indeed, i f  for te(r2, tk+,) on +(p, t)  i t  results that y 5 f(x), then inequality (4.50) follows imme­
diately because x along path +(p, t )  decreases for te(r2, tk+l). Now let  t = r3e(r2,tk+l) be the first instant 
after r, of the existence of an intersection of path +(p, t)  with the surface y - f(x) = 0; then x along +(p, t))  
decreases on the interval r2 5 t 5 T,, and, therefore, x(r3) < x(r2)on +(p, t). Since x increases along path 
+(p, t )  on interval [tk, r2 ] ,  then a t*�(tk, T,) is found such that 

Moreover, on interval tk 5 t 5 r2 we have y ? f(x) on path +(p, t); consequently, 

Further, since z(+(p, t))  decreases with passing time for tr[tk, tk+,], then 

Now let r4e(r3,tk+,) be the first instant of time after r3 of the intersection of path +(p, t) with the sur­
face y - f(x) = 0. U s e  lemma 3.9 on the two segments of path +(p, t )  for te(t*, .,) and for te(r,, ..,). From this 
lemma and inequalities (4.52) and (4.53), i t  follows that for the s a m e  x, y on +(p, t)  for te(t*, T,) is larger 
than for te(.,, r4); thus, 
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Repeating this reasoning a sufficient number of t imes,  we will a l so  prove inequality (4.51). And from in­
equalities (4.50)and (4.51),inequality (4.42)results. 

Returning now to equality (4.40),we see that from the Hurwitz conditions (4.9)and from condition 
(4.36)of the theorem proved, i t  follows that 

Proceeding also from inequality (4.42), 

on trajectory +(p, t) for tdtk,  tk+,]. We assume 

Accordingly, from the preceding inequality and from (4.37)we obtain 

Investigate now the differential equation 

Let V(t) be any solution of this equation for which 

We will then prove that for all t 1 0 there is fulfilled the inequality 

(4.54) 


(4.55) 


Indeed, for t = 0, this  inequality becomes (4.57). For tr[O, t,] the inequality given proceeds from (4.55)and 
(4.56)and from the' fact that V(t)increases for increasing t ime t. Analogously, the truth of this inequality is 
proved for a l l  td tk ,  tk+J. Thus, inequality (4.58)is true for any t 20 in all cases for which solutions v ( t )  
and +(p, t)  ofequation (4.56)and system (2.15)are defined. But equation (4.56)is easily integrated. We 
have: 
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(4.59) 

Due to (4.59) there must exist  a number K, for which 

V(t) < K (4.60) 

for all t L 0. From (4.58) and (4.60) there follows inequality 

for all  t 20. 

From the definition of function v in equality (4.39), i t  follows that the sequence of points +(p, tk) is 
bounded. Thus, following from the theorem on the continuation of solutions (refs. 27, 28), the sequence tk 
is unbounded (i.e., the solutions +(p, t) of system (2.15) are continued on the entire positive semiaxis t). 
But i f  the sequence of points +(p, tk) is bounded, path +(p, t )  has an o-limit point q by virtue of the 
Bolzano-Weirstrasse theorem. Since for t + =, x, + 0 along all solutions of system (2.15), as follows from 
equality (4.37),then the point q lies in the plane x1 = 0. However, as proven earlier, +(q, t) goes to the 
origin for t + + 00. As we will prove below, the null solution of system (2.15) is Lyapunov stable and, con­
sequently, +(p, t )  also goes to the origin for t --t + =. 

We will now prove that the null solution of system (2.15) is stable in the sense of Lyapunov. Take the 
point of the phase space with the coordinates xo, yo, zo, Ixol < 6 ,  lyol < E ,  and Izo(< E .  Let T > 0 be the first 
instant after t = 0 of the intersection of the path +(p, t )  with the plane x = 0; i f  none such exists,  then T = 

+ m. Just  a s  above, i t  is easy to substantiate that 

on path +(p, t )  for tc(0, T). Yet, from the preceding reasoning, i t  is clear that for all  t > 0 the inequality 

occurs. But then, from the definition of o i t  follows that 

where 52 is some constant. 

Proceeding from the las t  inequality, as in the above, the inequality 
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is fulfilled for all t > 0 on path +(p, t). But from the form of function v, x follows: 

Therefore, from c%- cy + z = x, we obtain 

1-2 
1 x12+X I  [cy - ( I  +c') X ]  +3(3-t 1 )  (y - CX)' < &'E'. 

However, since Ix,J 5 lx,,I for all t > 0, we obtain 

from the las t  inequality; SZ, is some constant. The inequalities obtained thus prove that the null solution of 
system (2.15) is stable in the sense of Lyapunov. The theorem is proved. 

Section 10 

In this section we investigate cases 3 and 6 introduced in chapter 11; i.e., the cases when a < 0, 0 < 
b _< 1. The following theorem occurs. 

Theorem 4.4 

If the conditions of cases 3 and 6 are fulfilled (i.e., i f  a < 0 and 0 < b 5 1)then the null solution of 
system (2.15) is globally stable for any nonlinear function f(x) satisfying the GHC (2.22) and (2.25). 

Proof 

For the proof of the theorem we will show that, in the cases considered, a l l  the conditions of theorem 
1.1 are fulfilled. As mentioned above, condition 1 of this theorem is fulfilled. For hyperplane L, figuring in 
condition 3, theorem 1.1, we choose a plane x = 0; then condition 3a will be fulfilled due to theorem 3.1. 

Instead of function v appearing in the condition of theorem 1.1, we will take the function 

(4.62) 
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Condition 3b of theorem 1.1 will be fulfilled in this case. Thus, we have only to prove that condition 3c of 
theorem 1.1 in the cases considered is also fulfilled, which we will now show. 

Assume that 

f ( x )  = - ; x +  a (x ) ,  (4.63) 

then according to the GHC (2.22)and (2.25),function a(x)must satisfy the following conditions 

a(0)= 0,xa(x)> 0 for x f 0. (4.64) 

System (2.15)in the designation (4.63)takes the form 

dx a d y = z - x x ,  dz- -_ bz (x). (4.65)=.Y + 3 X - - a  dr dt -

The following function of the coordinates of the phase space is introduced for consideration: 

1 1 1 - b  1I I  = --yz + --z2
b 

+7-(2-xy. (4.66)2 2 2 

The time derivative of this function, taken because of the differential equations of system (4.65),as is 
easily verified, is equal to 

n 
II =- , - x ( z - x ) - ( 1 - b ) x x ( x j .  (4.67) 

W e  now investigate the arbitrary trajectory +(p, t)  of system (2.15),of which initial point p l ies in 
plane x = 0. For definiteness, we will say that point p l ies  in half space y L 0 of plane x = 0. In this case, 

5 0, w e  will then say that y(p) > 0. Assume that there exists a T > 0 for which point +(p, T)  l i e s i nif ~ ( p )  

plane x = 0. For this we will say that T is the first instant of time after t = 0 of the intersection of path 

+(p, t)  with plane x = 0; i.e., for tC(0, T)  on +(p, t) ,  x > 0 results. 


Our theorem will be proved if we verify that on path +(p, t)  

v(0) > v(T). (4.68) 

Now we will prove inequality (4.68). 

Assume a t  first that z(p) 5 0. Since we see that x > 0 for tc(0, T) on path +(p, t) ,  then i t  follows from 
the third equation of system (4.65)that z < 0 for tC(0, T). Therefore, proceeding from equation (4.67),func­
tion u on the time interval 0 < t < T decreases with increasing time along path +(p, t). 
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Consequently, we have 

Since function u becomes v for x = 0, inequality (4.68) is proved in the case z(p) 5 0. 

Return now to the case when z(p) > 0. We begin moving along path +(pl t )  from point +(p, T) in the 
direction of decreasing t ime.  If z(+(p, T)) > 0, then for t < T and sufficiently close to T, y along +(p, t )  de­
creases  together with time. Since y(p) ? 0 by assumption, then path +(p, t )  for decreasing time from t = T 
intersects plane z - x = 0 for t = T, < T and goes into domain (z- x < O f .  In this domain, y along +(p, t )  in­
creases with decreasing time. For the following decrease of time, path +(p, t )  intersects either surface 
y - f(x) = 0, plane z - x = 0, or curve y - f(x) = 0, z - x = 0. In this case path +(p, t )  can intersect plane 
z - x = 0 a t  times following after t = r ,  (in the direction of decreasing time t )  only for y > 0, as was proved 
in section 3. 

If path +(p, t)  for t < r ,  intersects first the surface y - f(x) = 0, then we designate the instant of inter­
section of +(p, t)  with y - f(x) = 0 by r2; thus it is cledr that r2 < 7,. For further decreased time from T ~ ,path 
+(p, t )  intersects plane z - x = 0 for t = r3 < r2. If path +(p, t) first intersects plane z - x = 0 or curve 
y - f(x) = 0, z - x = 0, then this instant of intersection will be designated as r3 so that the instant of time rz 
is not defined in this case. If y(r3)> f(x(r,)) on path +(p, t) ,  then for further decreased time path +(p, t )  in­
tersects either surface y - f(x) = 0 for t = r4 < r3 or plane x = 0 for t = r4 = 0. 

When z(+(p, T)) _< 0, the behavior of path +(p, t) for decreased time from t = T is the same as in the 
case z(+(p, T)) > 0, except that the instant of time t = r ,  is not defined since for t < T and sufficiently 
close to T, path +(p, t) is not found inside domain (z - x < 01, as it  is not difficult to see. As in the case 
z(+(p, T)) > 0, we will designate, by T ~ ,r3,  r4,  the instants of intersection of path +(p, t)  with surface y ­
f(x) = 0, with plane z - x = 0 and again with the surface y - f(x) = 0 (or with plane x = 0 and then r4 = 0). 

The first instant after t = 0 of the intersection of the path +(p, t )  with plane z - x = 0 is designated as 
t,. We will show that 

and 

In that case when r4 = 0, relations (4.70) and (4.71) follow immediately because here the instants of time t ,  
and r3 coincide. Suppose now that t ,  < r3. Since z along +(p, t )  for te[O, TI decreases with increasing time, 
inequality (4.71) is fulfilled in the strict  sense. Proceeding from the definitions of the instants of time t ,  
and r3,  in this case inequality (4.70) is also fulfilled and, moreover, in the strict  sense. 

Onthe interval of time 0 5 t 5 t ,  along +(p, t), x varies monotonically and continuously; therefore, one 
and only one O,e[O, t,] exists for which 
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W e  will prove that 

When r4 = 0, relation (4.73) follows because instants t,, r3 and 0,coincide. But let t ,  < r3.  Consider first 
the case when y(r3) 5 f(x(r3))on +(p, t). As was proved for lemma 3.3, the inequality y - f(x) > 0, from which 
(4.73) also proceeds, is fulfilled on path +(p, t) for tc(0, t,). Now let  y(r3)> f(x(r3))on path +(p, t). In this 
case,  the instant of time r4 is defined. Since from the condition t ,  < r3, it is clear that t ,  < r41and, conse­
quently, x(T,) > 0 on +(p, t). From the definition of the instant r4, wehavey(r4)= f(x(r4)) on path $(p, t). 
Following from the s a m e  definition of the moment of time r4, the inequality 

Xk,) < X b 3 )  (4.74) 

is fulfilled on path +(p, t). 

From inequalities (4.70) and (4.74), i t  follows that a @,e(O, t,) exis ts  for which 

Since z(+(p, t)) decreases with increasing time for tc(0, T), i t  is clear that 

Moreover, y 2 f(x) on path +(p, t)  onthe interval of time 0 I t .( t,; therefore, from the definition of the in­
s tants  r., and @,, i t  follows that 

Now we apply l emma 3.9 to the intervals 0,st <@,and r4 5 t 5 r ,  on path +(p, t), from which inequality 
(4.73) proceeds. 

We will investigate x,  z and u on path +(p, t )  as functions of the y component. To avoid the ambiguity 
arising for this case,  the functions x, z and u will be given the following indexes: on interval 0 5 t _< t,, the 
index 1; on interval r3 < t _< r l I  the index 2 (if the instant r ,  is not defined; i.e., if z(+(p, T)) _< 0, then index 
2 is used for the interval r3 _< t _< T); andon the interval r ,  I t 5 T, the index 3. Since y along +(p, t)  varies 
monotonically on the respective intervals, the uniqueness will be completely restored in this way. 

W e  will now prove the inequality 

Consider first the case when y(p) 2y(+(p, 2,)). Because z decreases along +(p, t)  with the passing of time 
for tc[O, TI,i t  follows from inequality y(p) 2y(+(p, r3) )and from the form of the function u that 
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For te(r3, 7,)on path +(p, t), z - x < 0; thus, following from (4.67), function u decreases along +(p, t )  for 
te(r3, 7,). It is easily seen that y(+(p, r l ) )  < 0; therefore, (4.78) follows from (4.79). 

Assume now that y(p) < y(+(p, r3) ) .  From inequality (4.73) it follows that the inequality 

x1(y(73)) x2(y(r3))* (4.80) 

is fulfilled on +(p, t). We will prove that the inequality 

is fulfilled for y(p) < y < y(+(p, r3) ) .  Since x along path +(p, t )  increases with increasing time for y > f(x), 
inequality (4.81) can be violated only for the condition that y 5 f(x). Suppose that for y = y*, inequality 
(4.80) is violated. Since x, and x2 are continuous functions of y, we can then say 

Xl(Y*) = XAY*). (4.82) 

However, we saw above that y* > f(x,) and, on the other hand, y* 5 f(x,). This contradicts equality (4.82): 
the contradiction obtained proves inequality (4.81). 

Divide equality (4.67) by the third equation of system (2.15), thus obtaining 

du 	 a
b_ -- - - x - - 1 - b  x a ( x ) .  (4.83)dY 2 - X  

From this equality and from inequality (4.81), i t  follows that 

dn, du,
G < G  (4.84) 

for y(p) < y < y(+(p, r J ) .  Note now that from inequality (4.80), from the fact that z along +(p, t )  decreases 
for tc[O, TI and from the form of function u, consequently 

By integrating inequality (4.84) from y(+(p, r 3 ) )to y(p) and then using inequality (4.85), we obtain 

When yip) = 0, inequality (4.78) results. But if y(p) > 0, then i t  is clear that u,(y) decreases along with y for 
0 5 y 5 y(p); therefore, (4.78) follows from (4.86). 

If z(+(p, T)) 5 0 (i.e., i f  the instant of time 7, is not defined) then on the interval of time r3  5 t 5 T, 
function u along path +(p, t) decreases with increasing time, as follows from equality (4.67). Therefore, 
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(4.87) 

Hence, from (4.78) i t  follows that 

(4.88) 

and (4.68) proceeds from this inequality. 

Suppose now that z(+(p, T)) > 0; in the case investigated, the instant r l  is defined. We will prove that 
in this case 

Indeed, x decreases for y _< 0 and x Z 0 along path +(p, t); therefore, we can write 

for all  y, except y(+(p, r , ) ) ,  for which x,(y) = x,(y). From inequality (4.90) and from equality (4.83) it fol­
lows that 

(4.91) 

for y(+(p, rl)) < y < y(+(p, T)). Integrating inequality (4.91) from y(+(p, r l ) )  to y(+(p, T)), w e  obtain 

on path +(p, t) .  Since z - x 5 0 for tdr,, r,] on +(p, t), then function u decreases along +(p, t )  on this inter­
val. Therefore, from (4.92) we see that 

Thus, (4.88) and also (4.68) follow from (4.78). 

Now we will prove that the null solution of system (2.15) is stable in the sense of Lyapunov in the 
case investigated. We take an arbitrary E > 0 for which a 6c(O, e )  is found such that If(x)( < E for 1x1 < 6. 

Consider the arbitrary point p with coordinates x,, yo, z,, max flx,l, Iyol, Izol]< 6; for definiteness as­
sume that x, > 0. Let T > 0 be the first instant of time after t = 0 of the intersection of path +(p, t )  with 
plane x = 0. (It certainly can happen that +(p, t )  for t > 0 will not intersect plane x = 0; then we will as­
sume T = + -. W e  will investigate path +(p, t )  for tc(0, T). Since z decreases for tc(0, T) along +(p, t),  i t  
is clear that z < 6 on the interval of path +(p, t) considered. The y component on +(p, t )  increases for 

-z - x > 0; consequently, it can increase only for x < 6. Therefore, from equality-dY = it followsdx 
that dy/dx < 1 for y Z 26. Integrating this inequality, we obtain the result that y < 3~on the segment 
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considered. But the minimum of the ordinate, as mentioned above, l ies  on the plane z - x = 0. Thus, from 
the decreasing of function u along +(p, t )  for z - x < 0 it follows that y > -46 for te(0, T). From the s a m e  
considerations, i t  is easy to conclude that z > -46 for tc(0, T). Since x decreases along +(p, t) for y < f(x), 

then x < max (6, -’i’}follows from equality (4.64). In this way we proved that on the segment of path-

+(p, t) considered, the inequality 

is fulfilled. Consequently, from inequality (4.68) we see that the null solution of system (2.15) is Lyapunov 
stable. Thus, all the conditions of theorem 1.1 in the case considered are fulfilled, which also proves the 
theorem. 

Section 11 

In section 8 we established that for system (2.15) in cases 1and 4 for 0 5 b < 1, a > 0 and in case 5 
for c2+ b > 0 (i.e., in the case when b < 0, a > 0, cz+ b > 0), i t  is impossible to find a positive function of 
the type “integral of the nonlinearity plus a quadratic form of the sought after functions” which would have a 
negative time derivative for any f(x) satisfying the GHC. In this section we give two conditions sufficient 
for the global stability of the null solution of system (2.15). 

Theorem 4.5 

Assume that the following conditions are fulfilled: a > 0, 0 5 b < 1, or a > 0, b < 0, cz+ b > 0. Assume 
moreover that for any real x f 0 the inequality 

1O<xCc(x)< C X J  (4.94) 

is fulfilled, where c is given by formula (3.29). Then the null solution of system (2.15) is globally stable. 

Proof 

For the proof, we will introduce for consideration the following functions of the coordinates of the 
phase space: 

(4.95) 
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where the variables xl, yl, and z1 are  related to  the variables x, y and z by formula (4.12). The t ime deriva­
tive of function v by virtue of the differential equations of system (2.15) is equal to 

ir = - CX: + C(C' +- b)a2(X) - (c' + b)xa(x). (4.96) 

It is easy to ascertain that function v is positive definite and infinitely large (ref. 29). From inequality 
(4.94) it follows that the derivative ir of the function v on time is nonpositive. The derivative ir can become 
zero only on the plane x1 = 0. It is immediately clear from the differential equations of system (2.15) that a 
positive semitrajectory of system (2.15) can never lie entirely on plane x1 = 0. Therefore, we come to the 
conditions of theorem 4 in reference 29. Consulting this theorem thus completes the proof. 

Theorem 4.6 

Assume that the conditions of cases 1, 4 or 5 are fulfilled; i.e., that inequalities a > 0, 0 _< b < 1, or 
a > 0, b < 0 are fulfilled. Assume further that the GHC (4.8) or (4.9), depending on the numbers a and b, are 
fulfilled. Beyond that, assume that the function a(x) is differentiable for all  real x and there is fulfilled the 
inequality 

da
& > O  (4.97) 

for all  real x. Then the null solution of system (2.15) is globally stable. 

Proof 

Consider the following function: 

(4.98) 

Because of the differential equations of system (2.15), the time derivative of this function is equal to 

ir = - (1 - b)a'(x)(y - f(x))'. (4.99) 

Now we will prove that the conditions of theorem 1.1 are fulfilled in the case considered. Indeed, condi­
tions '1 and 2 of this theorem are obviously fulfilled. For the hyperplane L figuring in condition 3 of theorem 
1.1, we choose plane x = 0; then, as follows from theorem 3.1, condition 3a will also be fulfilled. For the 
function v figuring in condition 3b of theorem 1.1, choose function y2 + 2'; as follows from relations (4.98) 
and (4.99), al l  the rest of the conditions of theorem 1.1 will also be fulfilled. Consequently, the theorem is 
proved. 
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Section 12 

In this and in the following sections of the present chapter, we will consider system (2.8) for the con­
dition d f 0, and we will formulate some sufficient conditions for the global stability of this system's null 
solution. As before, we designate by A and B the real roots of the equation 

d o 2+ (c - b)o  - a = 0, (4.100) 

so that 

~ _ _ _ _  
A =  - (c - b )  +J (c  - b)2 + 4nd 

92d 

B =  - (c -b )  -i/ ( c  - + ?ad (4.101)212 

First consider cases 9, 10 and 20, for which the GHC has the single form (2.29). Instead of f(x) w e  in­
troduce the new nonlinear function y(x) by the formula 

Y(X) = f(x) - Bx. (4.102) 

Then the GHC in our cases is of the following form: 

a -B<-<OY (4 for x # O .  (4.103)
b 

System (2.8) is then rewritten in the form 

-­d.c
df - y -BX -Y(X); 

dY =z -cx - d B x  - dr  ( x ) ;df 
d z ,  ax - bBx - by (x). (4.104)
dt  --

For system (4.104) with condition (4.103) we try to find a Lyapunov function in the form "integral of the non­
linearity plus a quadratic form in the sought after functions." For this we will make use of the method pre­
sented in section 7. With system (4.104), consider the following linear system of equations with constant 
coefficients: 

dx-=y -Bx -r x .  dY-=z -cx -dBx - ~ l ' x ;
fft 	 ' d t  

dz -- _ - ax - bBx - b r x ,  (4.105)d t  

where constant r obeys the inequality 

a
b 

B<1'<0.  (4.106) 
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Assume 

k2  = c + dB. (4.107) 

'ram inequality (2.43), which is true in the cases considered, i t  follows that k2> 0 in these cases. 

Substitute in systems (4.104) and (4.105) the following change of variables: 

X, = B’x -By +Z;y1= z -k’x; Z,=ky? 

B
xl--Yl+ 21 (4.108)x I &+kZ 

Then systems (4.104) and (4.105) go into the forms 

dxl --Bx, - (B2-dB + 6) e l  (x) ,
dt 

0 1dt  - -kzi + (k2  -b)  1 ( x ) ,  
I (4.109) 

d Z l  ­dt- ky, - dk 1(4, I 
and 

(4.110) 

For system (4.110) we will find a Lyapunov function of the form 

where the numbers b;j and p are not defined for the present. We will require that the time derivative of this 
function taken by virtue of the differential equations of system (4.110) be nonpositive for any I?, thus sat­
isfying inequality (4.106): 

(4.112) 
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Since ir must be negative for any F satisfying inequality (4.106), it obviously must be negative definite for 
I? = 0. Consequently, from the las t  equality i t  must be that 

(4.113) 

From the last equalities, i t  a lso follows that 

b,, = b,, = 0. (4.114) 

We call  b,, = b,, = v. From equalities (4.111), (4.112)l (4.113) and (4.114) we obtain 

(4.115) 

and 

(4.116) 

In the following, the case will be of particular interest when k2  f b. From (4.116), it follows that in 
this ca se  b,, f 0 since for b,, = 0 function ir is of indefinite sign, as is easily seen. In addition, from in­
equality (2.29) i t  follows that B > 0; therefore, i t  must be that b,, > 0. Since function v is of interest only to 
within a factor of a positive constant, i t  can be assumed that b,, = 1. Then functions v and + are rewritten 
in the form 

(4.117) 

(4.118) 

For x, = 0, the coefficient for r x  in function ir must be proportional to x, since in the opposite case,  for small 
lrl, ir will have a sign. Therefore, 

B3 v (e - k?)=-v dk -1- -P 
k '  

Thus, w e  obtain 

p = v(bB - BkZ+ dk2). (4.119) 

Substituting the value of p found into (4.118), we obtain 
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+ VB ( b  
k 
-,@) Txz, -vB (bB -Bk2+dk2)Tx? 
- v (Bb -Bk2+dk') Px2. 

Here, substituting x1 - y1 + -k 
B z1 for (BZ+ kz)x, we acquire 

4=-Bxt -.E [ Y  (k2-b)  -(B2-dB +.b)] Txx ,  
+ [v(b-h2)(B2+k2)- vB (bB -Bh2+dk")]Tx2 

-Y (Bb -Bk2$- dh2)r2x2 

or 

(4.120) 

The condition for nonpositivity of the last  function consists of the fulfillment of the inequality 

-4Bvk2 ( b  - k? -d B )r +4Bv ( B b  -Bk2 -+dk?)T2 
> [Y  ( k ' j  -b) - (B2-dB +6)12P. (4.121) 

Utilizing this condition we will prove the following theorem. 

Theorem 4.7 

If the conditions of case 10 are fulfilled, i.e., i f  d < 0, b > 0, and b > - a > max {A, O), then the nullb 
solution of system (2.8) is globally stable for any nonlinear function f(x) satisfying the GHC (2.29). 

Proof 

From the conditions of the theorem we see that a < 0. But then 

b - kZ> 0. (4.122) 

Indeed, from (4.107) and (4.109) i t  follows that 

Bb - Bk2= Bb - c B  - d B Z =- a. (4.123) 

And, consequently (4.122) derives from a < 0, and B > 0. Proceeding from (4.12.2) and condition d < 0, in­
equality (4.121) is fulfilled for any v > 0 and sufficiently small in absolute value negative r. Therefore, i f  

we find a v > 0 such that inequality (4.121) is fulfilled for r = -	a - B, then this inequality will be fulfilledb 
for such v for all r satisfying inequality (4.106). Note that from (4.123) there follows 
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(4.124) 

Now, substituting - Bkz/b for I‘ in inequality (4.121), after dividing by BZk4/bZ,we obtain 

4bv ( b  -k2-d B )  +4B%/(Bb -Bk2+dk2) 
>, [ v  (k2- b )  -(Bz-dB’+ b ) ]a 

or 

4v(b - k2)(B2- dB + b) 1 [v(k2- b) - (B2- dB + b)IZ. (4.125) 

and therefore we obtain 

[v(kZ - b) + (B2- dB + b)IZ_<0. (4.126) 

The last  inequality can be fulfilled if, and only i f ,  

B 2 - d B f b  
v =  b - k a  ‘ (4.127) 

From (4.122) and from the conditions of the 

Yet, a s  mentioned above, inequality (4.121) is moreover, in the strict 

sense. Thus, from the proof of l emma 4.2, 

(4.128) 

taken by virtue of the differential equations of system (4.109), is nonpositive and can reduce to zero only on 
the straight line x1 = x = 0. Therefore, in the s a m e  way used to prove theorem 4.1, we see that the null 
solution of system (2.8) in the case  considered is globally stable for any f(x) satisfying the GHC (2.29). 
The theorem is proved. 

Theorem 4.8 

If the conditions of case 9 are fulfilled (i.e., if d < 0, b > 0, and B > - -d - A = 0), then the null solu­b ­
tion of system (2.8) is globally stable for any nonlinearity satisfying the GHC (2.28). 

Proof 

In the case considered, A. P. Tuzov (ref. 12) constructed for system (2.8) a Lyapunov function which, 
in our designations, has the form 
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Then its derivative on time, taken because of the differential equations of system (2.8) as is easily verified, 
is equal to 

ir = - dk2y(x)(Bx+ y(x)). 

In consequence of the GHC (4.103), v is positive definite, and ir is negative definite; in addition, ir goes to 
zero only for x = 0. 

However, in the case  given i t  is clear that all  the conditions of theorem 1.1 are fulfilled i f  the plane 
x = 0 is taken for the hyperplane L figuring in the conditions of this theorem, and if the function 0 . 5 ~ :+ 
0.52; is chosen for x = 0 instead of the function v. Thus the theorem is proved. 

Theorem 4.9 

If the conditions of case 20 are fulfilled, i.e., if d > 0, b > 0 and B > - (Ib > 0, then the null solution of 

system (2.8) is globally stable for any nonlinear function f(x) satisfying the GHC (2.39). 

Proof 

In the case considered, we will prove first that there takes place the inequality 

b - dB > 0. (4.129) 

By hypothesis, we have 

or 

b d ( c  - b)’+ 4ad < 2ad - b(c - b). (4.130) 

Squaring inequality (4.130) and collecting similar terms, we obtain 

4a2d2- 4abcd > 0. 

However, from condition -
that b + c > 0. 

b > 0 i t  follows that a < 0, and that is why ad < bc. But then from (4.130) we find 
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W e  see further that 

b - d B =  6+c +{mf2+ 4nd 
. ¶2 

and thus inequality (4.129) results. 

Immediately proceeding from the relations (4.101) and (4.102), 

b - k Z- dB = b - c - 2dB = d - ( T +4ad 20. (4.131) 

Assume first that 

(c - b)'+ 4ad > 0. (4.132) 

Then from (4.131) i t  results that inequality (4.121) is fulfilled for sufficiently small in absolute value nega­
tive I?, i f  only v > 0. In the hypotheses of the theorem being proved, it is easy to see that relations (4.122) 
and (4.124) take place. But then from inequality (4.129) i t  side of equality (4.127) is 

positive. It is known that inequality (4.12L) is fulfilled for moreover, in the strict 
sense. 

Consequently, the function v defined by equality (4.128) is a Lyapunov function for system (2.8) and 
for the case considered. Therefore, as for the proof of theorem 4.7, i t  is easy to see that the null solution 
of system (2.8) is globally stable. 

Assume now that (c - b)' + 4ad = 0. Then from equality (4.131) we obtain 

b - kZ- dB = 0. (4.133) 

Thus, in the case considered i t  follows that inequality (4.121) takes on the form 

4Bv ( B b  -Bk2 +df2) >/ v2 (k?-b)2+ ( B 2- dB + b)' 
-2vB (k'B -dk2- bB) 

or 

b ( k 2- b) + (BZ- dB + b)I25 0. (4.134) 

Therefore, a s  above, it results that function v, defined by equality (4.128) is a Lyapunov function for system 
(2.8) and i n  the considered case. The derivative of this function on time due to system (2.8) as follows from 
inequalities (4.120) and (4.133) is equal to 

i r ,  = - Bx: - 2(BZ- dB + b)x,y(x) - v(Bb - BkZ+ dk2)y2(X). 

Hence, from equalities (4.134) and (4.127), i t  is easy to see that 

1- E [ B x l + ( B 2 - d B +  b ) y ( X ) l 2 .  (4.135) 
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1 a,. . .. 

In consequence of the last equality, 3 goes to zero only on the surface 

Bx, + (B' - dB + b)y(x) = 0. (4.136) 

Consider the path +(p, t )  of system (2.8) beginning a t  point p f (0, 0, 0) which lies on the plane x = 0. 
Let T > 0 be the first instant after t = 0 of the intersection of path +(p, t) with plane x = 0. We will prove 
that 

Inequality (4.137) cannot be fulfilled only when path +(p, t )  for all  k(0, T) lies on surface (4.136). But then 
it is obviously necessary that 

(4.138) 

From the first equation of system (4.109) we have in this case 

(4.139) 

But on the interval of time 0 < t < T, x on path +(p, t) keeps the s a m e  sign by definition of the instant of 
time T. And, a t  the s a m e  time, y ( x )  on path +(p, t) for tc(0, T) keeps the same sign a s  a consequence of the 
GHC (4.103). In addition, from equality (4.139) i t  follows that x,(+(p, T)) f 0. This proves that equality 
(4.137) is fulfilled. 

Proceeding from this inequality, in the case given, all  conditions of theorem 1.1 are fulfilled if for 
hyperplane L, the plane x = 0 is chosen and for the function v, the function v, defined by equality (4.128) is 
taken for x = 0. Thus, the theorem is proved. 

Section 13 

In this paragraph we consider system (2.8) in the conditions of cases 8, 11-14, 16, 18, 21 and 22. In 
all of these cases, the lower limit of the varying quantity f(x)/x for x f 0 giving the GHC, is equal to A. 
Instead of f(x), introduce in these cases a new nonlinear function y(x) by the formula 

Y(X) = f(x) - AX. (4.140) 

System (2.8) then takes on the following form: 

dx_­dt - y - A n  - 7 (x); c y  =z-cx - dA.x - d i  (x) ;d t  
d2 

a = - QX - bAx - by (x). (4.141) 
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dz 

For system (4.141)we will, as earlier, look for a Lyapunov function in theform "Integral of the non­
linearity plus a quadratic form of the coordinates of the phase space." For this case,  in addition to system 
(4.141),consider the linear system with constant coefficients, 

dx dY -dAx'- d r x ;- y -Ax -Tx. - = z ---'ad t  	 . dt 

-rit --a x  -.bAx -DTx, (4.142) 

where the constant r obeys the same inequality as that of the quantity y(x)/x in the corresponding GHC. 
Assume 

k 2  = c + dA. (4.143) 

From the conditions of the cases considered and from inequalities (2.42)and (2.43),it results that k 2  > 0 in 
these cases. 

In systems (4.141)and (4.142)we place the following change of variables: 

(4.144) 

Then systems (4.141)and (4.142)are rewritten in the forms 

*-= dt -A x ,  - (A2-	d A  + 6 )  y ( x ) ;% = -k z ,  + ( k 2 - 17) ~ ( x ) ;  

dt = k y ,  - dk 7 (x)  (4.145) 

and 

For system (4.146)we seek a Lyapunov function in the form (4.111). Changing B into A in the corresponding 
relations of the preceding paragraph, we will prove that for the condition 

k 2 - b f O  (4.147) 

the function v must have the form 

1 1 I 1+ ~ V Y :  + FYZ;+ y v  (bA -Ak2 9dk')TX2. (4.148)v - 5 ~ :  
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-- 

And i ts  time derivative taken because of the differential equations of system (4.146) is equal to 

W =-AX: + [ * I  (k2- b )  - (A2-dA +b ) ]rXxl 

+vk? ( b-k3-dA) Tx' - Y (AB -Ak2 +dk3)Px2. (4.149) 

When k2- b = 0, function v can also have the form (4.148); however, i t  might not contain the term xi. W e  
ascertain that for such cases there can be realized the equality kZ- b = 0, 

k3-b = c + dA - b = c -b + { i c  - b)P + And (4.150)2 

Thus, i t  is clear that inequality (4.147) can be violated only for the condition that a = 0 since d f 0 in the 
cases just considered. But, as an immediate investigation will show, a can go to zero only in the condi­
tions of cases 16 and 18. Thus, in the remaining cases of the section considered, function v and i t s  deriva­
tive must have the forms (4.148) and (4.149). 

The condition for the nonpositivity of function (4.149) occurs in the fulfillment of the following in­
equality: 

-4Avk2( b  - k ' - dA) r 4-4Av (Ab -Ak'+ dk') P 
>, [v  ( k 2- 6 )  - (A' -d A  -tb)]' r' . (4.151) 

Using this condition, we will prove several theorems on the global stability of the null solution of 
system (2.8). 

Theorem 4.10 

If the conditions of case 14 are fulfilled (i.e., if d < 0, b < 0, 0 < A < 3 < B) and if in addition A' ­b 
Ad + b < 0, then the null solution of system (2.8) is globally stable for any nonlinearity f(x) satisfying the 
GHC (2.33). 

Proof 

In the case considered, the GHC for function y ( x )  is written in the form 

(4.152) 

From equality (4.143) we obtain 

b - k2- dA = b - c - dA - dA. 
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And from this and (4.101) we find 

b - kZ- dA = - d(c- b)’+ 4ad < 0. (4.153) 

Proceeding from the last inequality, condition (4.151) is fulfilled for any sufficiently small  positive if 

u > 0. Therefore, if we choose v > 0 such that inequality (4.151) is fulfilled when r = -	a - A, then for
b 

such v, inequality (4.151) will be fulfilled for all and, moreover, in the strict sense. From 

the definition of the numbers A and kZ,we see that 

(4.154) 

By substituting- Akz/b f o r r  into the inequality (4.151), and then by dividing by A2k4/bZ,we obtain 

or 

4v(b - kZ)(A2- dA + b) L [v(kZ- b) - (A2- dA + b)]’. (4.155) 

Therefore, w e  obtain 

[ 4 k 2- b) + (A2 - dA + b)]’_< 0. (4.156) 

The last  inequality can be fulfilled if, and only i f ,  

(4.157) 

From the hypotheses of the theorem it follows that the number is positive. However, as 

mentioned above, for such v, inequality (4.151) is fulfilled for all moreover, in the strict 

sense. Consequently, from the proof of lemma 4.2, the time derivative of the function 

X 

A”dA + 6+ (bA -Ak2 + dk2)=--- (4.158)1(x)O‘X 

0 

taken because of the system of equations (4.145) with the condition (4.152) is nonpositive and can go to 
zero only on the line x, = x = 0. This a lso concludes the proof of the theorem. 
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Theorem 4.11 

If the conditions of case 21 are fulfilled (i-e., if d > 0, b = 0, A > 0) and i f ,  moreover, A - d < 0, then 
the null solution of system (2.8) is globally stable for any function f(x) satisfying the GHC (2.40). 

Proof 

The GHC (2.40) can be written as 

(4.159) 

From the conditions of case 21, it follows that inequality (4.151) is fulfilled for sufficiently smal l  
positive r only if v > 0. For this inequality to  be fulfilled for all positive r, it  is necessary and sufficient 
that there be fulfilled the inequality 

4AkZ/(d - A) > [vk’ + A(d - A)]’ 

or 

[vk’ - A(d - A)]’ 5 0. (4.160) 

The last  inequality can also be fulfilled there only in the case when 

d - Av = A - - k? (4.161) 

From the hypotheses of the theorem, consequently, the v chosen in this way is positive. But then in­
equality (4.151) i s  fulfilled for all  r > 0 and, moreover, in the strict sense. Thus, it follows that the time 
derivative of the function 

X 

+A (‘d- A)’2 -[(x) dx (4.162) 
0 

is nonpositive and can go to zero only for x = x1 = 0. And this proves the theorem. 

Now we will consider case 22. 

Theorem 4.12 

If the conditions of 22 are  fulfilled i.e., i f  d > 0, b < 0, 0 < A < -	a and i f  besides that A’- Ad +b 
b < 0, then the null solution of system (2.8) is globally stable for any nonlinear function f(x) satisfying the 
GHC (2.41). 

The proof of this theorem is analogous to the proof of theorem 4.10. 
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Theorem 4.13 

If the conditions of case 16 are fulfilled (i.e., i f  d > 0, b > 0, A > max (0, - a /b ]  and if Ab - AkZ+ 
dkz 1 0) then the null solution of system (2.8) is globally stable for any function f(x) satisfying the GHC 
(2.3 5). 

Proof 

The GHC in the case considered has the form (4.159). 

Assume first that 

(c - b)’+ 4ad = 0. (4.163) 

In this case,  we have A = B, and the proof of our theorem’s assertion coincides with that part of the 
proof of theorem 4.9 devoted to the case when equality (4.163) is fulfilled. 

Now let 

(c - b)’ + 4ad > 0. (4.164) 

Proceeding from inequality (4.164) and relation (4.153), inequality (4.151) is fulfilled for any sufficiently 
small positive I?, if only v > 0. We will look for a positive v such that inequality (4.151) is fulfilled also for 
sufficiently large r; then, as is easily seen, it will be fulfilled for all I? > 0. 

We will prove first that from inequality 

A’- Ad + b 5 0 (4.165) 

there follows the inequality 

Ab - AkZ+ dk2> 0. (4.166) 

Multiplying (4.165) by k 2> 0, we obtain 

- A2kZ+ dAkZ2 bk’. 

Adding A2b to both sides of inequality (4.166), we obtain 

AZb- A2kZ+ dAk22 (A2 + k2)b> 0. 

And this proves (4.166). 
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Suppose that inequality (4.165)is fulfilled in the strict sense. Further, let  there be fulfilled the in­
equality 

k2- b < 0. (4.167) 

Assume in this case that 

A * - A d + b  
V =  ke -b >0,: (4.168) 

then inequality (4.151)will be fulfilled for all r > 0 and, moreover, in the strict  sense. 

Let  there be true the equality 

k2 - b = 0. (4.169) 

In this case, inequality (4.151)is fulfilled for all  r > 0, if only u is positive and sufficiently great. 

Suppose now that 

k2 - b > 0. (4.170) 

W e  will prove that the following inequality is true: 

A2b - A2k2+ Adk2> (b - k2)(A2- dA + b). (4.171) 

Indeed, if  the right side of inequality (4.171)i s  expanded and the common terms cancelled, w e  obtain the in­
equality 

b(b - Ad - k2) < 0, 

which proceeds from relation (4.153)and condition (4.164).Following from inequality (4.171),if we assume 
that 

A ' - d A + b  > O ,y = 
b - k 2  

(4.172) 

then inequality (4.151)will be fulfilled for a l l  > 0 in the strict  sense. 

Suppose now that 

A'- Ad + b = 0. (4.173) 

In this case,  inequality (4.151)is also fulfilled in the strict sense  for I7> 0, if only u is positive and suffi­
ciently small. 
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Go now to the case when 

A2- dA + b > 0. (4.174) 

If inequality (4.170) is fulfilled, it is then necessary to  choose v by formula (4.168), and inequality (4.151) 
will be strictly fulfilled for all r > 0. If inequality (4.167) is fulfilled, then from inequality (4.171) it fol­
lows that inequality (4.151) a l so  will be fulfilled in the strict  sense  for > 0 i f  v is chosen by formula 
(4.172). But if, finally, equality (4.169) is true, then as before, inequality (4.151) is fulfilled in  the strict 
sense for all  r > 0, only if  v is sufficiently great. 

Thus, if (4.164) is fulfilled, a v can always be found such that inequality (4.151) is fulfilled in the 
strict sense  for all r > 0. But then, as follows from the preceding reasoning, the null solution of system 
(2.8) is globally stable for any f(x) satisfying the GHC (2.35). Thus the theorem is proved. 

Theorem 4.14 

If the conditions of case 18 are fulfilled (i.e., if d > 0, b > 0, A = - 9= 0) then the null solution of sys­b 
t em (2.8) is globally s table  for any function f(x) satisfying the GHC (2.37). 

Proof 

In the case c f b, the theorem was proved by A. P. Tuzov (ref. 12). Therefore, suppose that c = b; for 
this case,  in reference 12 a Lyapunov function is constructed which in our notations has  the form 

The time derivative of this function taken by virtue of the differential equations of system (2.8) is equal to 

= - bdf ’(x). 

Consequently, if plane x = 0 is taken for hyperplane L and the function defined by equality (*) is taken for 
the function v, then all the conditions of theorem 1.1 will be fulfilled. Thus the theorem is proved. 

Consider now system (2.8) for the condition that A’ - Ad + b = 0. Then the following theorem is true. 

Theorem 4.15 

Let  the conditions of either case 14, 21, or 22 be fulfilled. Moreover, let  

A2- Ad + b = 0. (4.175) 

Then the null solution of system (2.8) is globally stable for any function f(x) satisfying the GHC. 
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Proof 

From equality (4.175) i t  follows that the first equation of system (4.145) is not dependent on the other 
two, which is why along all solutions of system (2.8) there is fulfilled the equality 

x, = xloe-At, (4.176) 

where x,, is the value of x, for t = 0 on the solution considered. 

We introduce for consideration the following function of the coordinates of the phase space: 

x 
1 

V -YI' f -2 
1 
2,' + (Ab  -Ak2 + dk2)J 7 ( x )  dx. (4.177)2 

0 

The time derivative of this function taken because of the differential equations of system (2.8), as is easily 
verified, is equal to 

6 = [ (k2-b) X ,  + k' ( b  -k2-d A )  x 
- ( A b-Ak2 + dk') y ( x ) ]  ( x ) .  (4.178) 

We will prove that for x1 = 0, ir _< 0 and ir can go to zero only for x = 0. W e  have 

6Ix,-o= [kz(b  -k2-dA)x - ( A b-Ah3 + dk?)7 (x ) ]y (x). (4.179) 

If the conditions of case 21 are fulfilled, then the proof of the assertion proceeds from (4.179) and from the 
GHC (4.159). 

Now let the conditions of either case 14 or 22 be fulfilled. In both of these cases ,  the GHC has the 

form (4.152). In (4.179), substitute x instead of y(x). By virtue of (4.154) we have 

b 

Consequently, from here and (4.175), ir 3 0 for x, = 0 and y(x) = x. From (4.152) i t  then follows 

that ir 5 0 and ir = 0 only for x = 0 i f  x, = 0. 

The subsequent prcof of theorem 4.15 is carried out just as in the proof of theorem 4.3, except that the 
function defined by means of equality (4.177) should be considered instead of the function v given by equality 
(4.39). 
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Section 14 

In this section we will formulate several conditions for the global stability of the null solution of sys­
tem (2.8). The conditions these impose on f(x) are more severely restrictive than the GHC. 

Theorem 4.16 

Suppose that the conditions of cases 8, 11, 12 or 13 are fulfilled; suppose, moreover, that function f(x) 
for all  x f 0 satisfies the inequality 

(4.180) 

then the null solution of system (2.8) is globally stable. 

Proof 

We will prove first that in the conditions of the cases considered there is true the inequality 

A 2 - Ad + b > 0. (4.181) 

If the conditions of cases 8 or 11 are fulfilled, then inequality (4.181) is obvious. Let the conditions of 
cases 12 o< 13 be fulfilled; i.e., let d < 0, b < 0, 0 < A < B _< - a h .  Then i t  is clear that a > 0 and c - b>O. 
From the definition of the number B we have 

- (c -b )  -{ ( c  -b)? + 4n2 4-f­-~-Id- - b 

or 

- 2 a d + b ( c - b ) > - b d ( ( c - b ) ' + 4 a d .  (4.182) 

Thus, after squaring and eliminating, we have 

ad _< bc. (4.183) 

From (4.182) we conclude that -2ad + b(c - b) > 0. Moreover, from the conditions of the cases ,  i t  follows 
that (c - b)' + 4ad > 0. From the las t  two inequalities we have cz- bZ> 0. From here and from c - b > 0, 
we conclude 

c + b > O .  (4.184) 
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By the definition of A we have: 

- 2Ad = c - b - (c - b)' + 4ad. 

From here and (4.183) and (4.184) we obtain 

- 2Ad 2 (C - b) - d ( ~- b)'+ 4bc = c - b - c - b = - 2b 

or 

- A d + b L O ,  

This last inequality thus proves (4.181). Moreover, relation (4.153) leads to kZ- b > 0 in the cases con­
sidered. 

From inequality (4.180) i t  follows that 

(4.185) 

But then, proceeding from relation (4.149), the time derivative of the function 

(4.186) 

due to the differential equations of system (2.8), is nonpositive and can go to zero only for x1 = 0. Thus the 
assertion of the theorem also follows. 

Theorem 4.17 

Let the conditions of cases  14, 21, or 22 be fulfilled. Moreover, let inequality (4.181) and condition 
(4.180) be fulfilled. Then the null solution of system (2.8) is globally stable. 

Theorem 4.18 

Let the conditions of case 16 be fulfilled. In addition, let the inequality Ab - AkZ+ dk' < 0 be true. 
Then the null solution of system (2.8) is globally stable i f  condition (4.180) is true. 

The proofs of the las t  two theorems coincide with the proof of theorem 4.16. 
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Section 15 

In this section we consider case 17 and find the conditions sufficient for the global stability of the 
null solution of system (2.8). As will be proved in the end of chapter VII, we find that the conditions for 
this are necessary. 

From the conditions of case 17 and from the definition of the quantity A as a root of equation (4.100), 
it results in this case that 

c + dA = a + bA = 0. 

Assume, as before, that y(x )  = f(x) - Ax; then system (2.8) assumes the following form: 

(4.187) 

The GHC (2.36) in this case is written in the form xy(x) > 0 for x f 0. 

Theorem 4.19 

If the conditions of case 17 are fulfilled and if function y(x) satisfies the conditions 

(4.188) 

and 

(4.189) 

then the null solution of system (2.8) is globally stable. 

The proof of this theorem rests essentially on the following lemma. 

Lemma 4.3 

If the conditions of theorem 4.19 are fulfilled, then any path +(p, t )  of system (2.8) for t 20, lying in 
one of the half-spaces {x < 01 or (x> O), goes to the origin as t -f + m. 

Proof 

In the case considered, A. P. Tuzov (ref. 12) constructed a Lyapunov function which in our notations 
has the form 
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(4.190) 
u 


where xl  = AZx- Ay + z and the quantity p is defined in the following way: p = AIA2- dA + bl, i f  A'- dA + 
b f 0, and p is an arbitrary number in the interval 0 < p < 4A', i f  A2 - dA + b = 0. 

The t ime  derivative of function v taken because of the differential equations of system (4.187) is 
equal to 

(4.191) 

In the case considered i t  is not difficult to see that the function v is positive definite and i ts  derivative is 
negative definite. 

For definiteness, suppose that +(p, t) lies in the half-space x > 0 for t 20. According to lemma 3.1, i t  
is true that z > 0 on path +(p, t) for t 20 (since, in the contrary case,  path +(p, t )  would intersect with 
plane x = 0 for positive values of time). 

Suppose first  that J i ) d x  diverges. From relation (4.191) i t  is easy to conclude that the time deriva­
0 


tive i. of the function v is a negative definite quadratic form of the quantities x1 and y(x). Since it results 
that x > 0 and y(x) > 0 on path +(p, t )  for all t 20, then ir < 0 on +(p, t )  for t 2 0. Therefore, on path +(p, t) 
for t > 0 thereis fulfilled the inequality 

where v(p) is the value of function v at point p. Since, by supposition, the integral 1 z x ) d x  diverges, in­
0 


equality (4.192) is fulfilled only in bounded portions of the half-space x > 0. Therefore, path +(p, t )  is 

stable in the sense of LaGrange and, consequently, has an o-limit point. Let q be the o-limit point of tra­
jectory +(p, t) ,  and we will prove that q coincides with the origin. Indeed, suppose to the contrary that this 
is not so. Note that because of the monotonicity of the variation of function v along path +(p, t), there is 
fulfilled on this path the relation 

l i u i  v =v ( 4 ) .  (4.193) 
.r-+o3 

We will pass through point q on path +(q, t )  of system (2.8). Since, by supposition, q is not the origin, 
a t ,  >.Ocan be found such that 

However, trajectory +(q, t )  is limiting for trajectory +(p, t), while function v is not continuous. Therefore a 
t, > 0 can be found such that 
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The last  inequality contradicts the fact that v decreases with increasing t i m e  along path +(p, t), andi t  a lso 
contradicts relation (4.193). The contradictions obtained thus prove that point q coincides with the origin. 

Since point q is any a-limit point of path +(p, t), this a lso shows that path +(p, t )  goes to the origin in 
the case considered. 

Returning to the case when the integral 
+r

y(x)dx diverges, on the basis of the conditions of theorem 
0 

4.19, we will have 

__
lim Y ( X ) = +  00. (4.196)

X- +m 

Return now to the function x,. The time derivative of this function, taken because of the differential 
equations of system (4.187), obviously is equal to 

$, = - Ax, - (AZ- Ad + b)y(x). 

Assume that 

G = A'- Ad + b, (4.197) 

then 

2 ,  = - Ax, - Gy(x). (4.198) 

Proceeding from lemma 3.3, path +(p, t )  for t 20 goes to  the origin i f  i t  lies in domain {x > 0, y - Ax ­
y(x) 5 0, z > O{. Suppose, therefore, that point p l ies in domain {x > 0, y - Ax - y(x) > 0, z 2 01. We will 
prove that path +(p, t) ,  in this case for t > 0, intersects the surface y - f(x) = 0. 

Two cases are possible. 

1. G 5 0. In this case,  resulting from equality (4.198), the function x, on path +(p, t )  is bounded from 
below since i t  increases for negative xl. Suppose that path +(p, t )  does not intersect surface y = Ax + y(x). 
Then for all t 20 on +(p, t )  thereis fulfilled the inequality 

y - AX > Y(x). (4.199) 

However, on path +(p, t),  z is bounded for t > 0 (since z decreases and is positive). We will prove that 
x on path +(p, t )  is not bounded. Indeed, assert  to the contrary that x on $D, t )  is bounded. But then, a s  
proved by the equality 

(4.200) 

74 



y on $(p, t )  is also bounded for all t 20. Consequently, $(p, t )  is stable according to LaGrange in a posi­
tive direction and thus has an a-limit point q with the coordinates x,, yo, z,. Since x along path $(p, t )  in­
creases and z decreases with increasing time, then along +(p, t )  there is fulfilled the relations 

lim Z =  z0and lim x = x,, >0. (4.201) 
t + + m  t-+=J 

We will pass  through point q of path $(q, t) of system (2.8). Since x, > 0, then for t > 0 and sufficiently 
smal l  on $(q, t )  it results that z < z,, which contradicts the fact that $(q, t )  is a limit trajectory for $(p, t),  
and thus contradicts relation (4.201). Therefore, x on path $(p, t )  increases monotonically and without 
bound with increasing time. But, from (4.196) and (4.199), i t  then follows that on path $(p, t )  there is ful­
filled 

~ 


l im ( y  -A x )  = 4-a. (4.202) 

x - +m 

Since z on path $(p, t )  is bounded, then from the last  relation and from the definition of x, i t  follows that on 
+(p, t )  there is fulfilled 

(4.203) 

The last  relation contradicts the fact that x, on path +(p, t) is bounded from below for t L 0. The contradic­
tion obtained proves that +(p, t )  for t > 0 intersects surface y - A x  - y(x) = 0. 

2. G > 0. Supposein this case that path $(p, t )  for t 2 0 remains in domain {x > 0, y - A x  - y(x) > 0, 
z > 0). As in the preceding case,  w e  will prove that x on path +(p, t) increases without bound with increas­
ing time and that relations (4.199) and (4.202) are also fulfilled in this case. Relation (4.203), as in the 
preceding case, follows from the boundedness of z on path +(p, t )  and from relation (4.202). 

Now let T > 0 be the instant of time to which the solution +(p, t) of system (2.8) is continued. Cer­
tuinly it can happen that T = + DO. For the following reasoning, it does not matter whether T is a finite or 
infinite number. Let E be the se t  of those values of time t, in the half-interval [O,  T), when on path +(p, t) 
the following inequalities are fulfilled: 

dx lX , < O ,  -;IT-- -Ax,  -Gy ( x )  <0. (4.204) 

From relation (4.203), i t  follows that x, on path $(p, t )  is not bounded below for t 2 0; therefore, on 
path +(p, t )  i t  must be true that 

(4.205) 

Dividing the third equation of the system by equality (4.198), we obtain 

(4.206) 
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On set E along path 4(p, t) there will be fulfilled the inequality 

Since dx,/dt is negative on set E, from the last  inequality we obtain 

dz b-df<-.-. dx, 
G dt 

This inequality is true on the se t  E; integrating i t  on this s e t ,  we obtain 

And thus, from here we obtain 

Es d z = - - .  

Since dz/dt on path +(p, t) is negative for t 10,from the last  inequality we obtain 

(4.207) 

(4.208) 

(4.209) 

(4.210) 

The last  relation contradicts the fact that z is bounded on path +(p, t) for t 20. The contradiction obtained 
thus proves that path +(p, t )  intersects the surface y - Ax - y ( x )  = 0 for t = t ,  > 0. 

We will prove now that path +(p, t )  goes to the origin. Let point p have coordinates xo,yo, zo. Assume 
that 

m =  max Iy (x )+Axl .  (4.211)
0 41<.Yo 

We introduce for consideration point q with coordinate x = x,: 

y = yo + 2a + m, z = z,, 

where 

a = max (3mb, 3zi, 3xt, 11. (4.212) 

We will prove that path $(q, t )  for t 5 0 intersects plane x = 0. For this we will prove that on the interval 
0 Ix I xo on $(q, t) there is fdfil led the inequality 

y > a + m .  (4.213) 
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Suppose to the contrary that this is not so; i.e., suppose that there exists a T < 0 such that on path +(q, t) i t  
results that 

0 5 X(T)< xo, y(7) = a + m (4.214) 

and 

X(T)< x 5 xo, y(r) < y(t) for tE(T, 01. (4.215) 

dzFollowing from equality 
dx  
-=, -by  

- ( x ) ,  
in this case for t&, 01 on path +(q, t )  there is fulfilled 

dz - b m->- - b m  > - - - .
dx y - m  

Integrating this inequality, we obtain 

(4.216) 

Since z decreases with increasing time on the interval T 5 t 5 0 along $(q, t ) ,  then from (4.200) because of 
(4.216) we see that 

bmxo 
dy zo+ 7 
--< adx 

on path +(q, t )  for t&, 01. 

Integrating the last  inequality we obtain 

ZCXO 
y (.) >yo +2a + m -y -

Thus, from (4.212) we have 

Y(T) > yo + a + m > a + m, 

which contradicts equality (4.214). 

Therefore, path +(q, t) intersects plane x = 0 for t = t, < 0, and for tE[tq, 01 on it, there results 

y > Ax + y(x). 

In exactly the s a m e  way as for path +(p, t), we will prove that path +(q, t )  intersects the surface 

y - Ax - y(x) = 0 for t = T, > 0. 

77 

(4.217) 

(4.218) 



Let Cq be the abscissa  of point +(q, Tq). From lemma 3.9 i t  follows that abscissa  (,is a point on 
+(p, t,) (the point of intersection between the path +(p, t) and the surface y - Ax - y(x) = 0) smaller than 
Cq. If path +(p, t) for t > t, remains in domain (x > 0, y - Ax - y(x) _< 0, z > 01, then from lemma 3.3, it goes 
to the origin. Suppose that path +(p, t) for t = t, > t, intersects surface y - Ax - y(x) = 0 and goes into 
domain (x>O, y-Ax-y(x)>O, z>Of. Let (,be the abscissa  of point +(p, t2). However, z montonically de­
creases alongpath +(p, t); therefore, z(+(p, t,)) < 2,. Consequently, i f  (,_< xo then, by applying lemma 3.9 
to paths +(p, t )  and +(q, t) ,  we will prove that path +(p, t )  intersects surface y - Ax - y(x) = 0 for t = t, > t, 
and for this it is true that 

But i f  (,> x,, then, since z decreases along path +(p, t) ,  we can apply the same lemma to the two seg­
ments of path +(p, t )  (i.e., to  segment tdO, t,] and to segment t > t,), andprove that path +(p, t )  intersects 
surface y - Ax - y(x) = 0 for t = t ,  > t, and that inequality (4.219) is fulfilled. 

From the preceding i t  is clear that there is only one o f h o  possibilities: either path +(p, t )  for suffi­
ciently large t l ies in domain (x > 0, y - Ax - y(x) _< 0, z > 01 and then, according to lemma 3.3, i t  goes to the 
origin; or there exists a sequence t,, t,, t ,  .. . -f + w of the instants of intersection of path d(p,  t )  with sur­
face y - Ax - y(x) = 0. For this we see that 

From inequality (4.220) i t  follows that the abscissa of point +(p, tk) is bounded. Since this point l ies on 
the surface y - Ax - y(x) = 0, from the boundedness of the abscissa  and from the continuity :.- y(x), i t  fol­
lows that the y component of point $(p, tk) is also bounded. As mentioned above, z is bounded for t > 0 on 
path +(p, t). Therefore, the sequence of points +(p, tk) is bounded and, in addition, has a limit point r. 

We will prove that r coincides with point x = y = z = 0. Suppose to the contrary that this is not so. W e  
pass  through point r on path +(r, t )  of system (2.8). This path will be a limit for +(p, t) and, consequently, 
will lie wholly in domain (x  > 0, z 2 0). But i f  point r does not coincide with the origin, then i t  is easy to 
see that for sufficiently small t > 0, z will decrease with increasing time on +(r, t).  However, z decreases 
monotonically along path +(p, t); therefore, 

lim z ('2 ( p ,  t))= z(r-). (4.221)
t - + m  

This las t  relation contradicts the fact that z(+(r, t))  decreases with increasing time and that +(r, t )  is an 
o-limit trajectory for +(p, t). The contradiction obtained proves that point r coincides with the origin. As 
is easily seen, theorigin establishes itself a s  a Lyapunov stable equilibrium position of system (2.8). 
Therefore, path +(p, t )  has a Lyapunov stable equilibrium position for i ts  a-limit points and, moreover, goes 
to this equilibrium position as t + + M. Thus the lemma is proved. 

For the proof of theorem 4.19, wenote that the conditions of this theorem and also all  the conditions of 
theorem 1.1 are fulfilled. Indeed, conditions 1 and 2 of this theorem are obviously fulfilled. For the hyper­
plane L figuring in condition 3 of the theorem, we select  the plane x = 0; then, as follows from lemma 4.3, 
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condition 3a will be fulfilled. For the function v figuring in condition 3b of the theorem, we select  function 
v introduced by equality (4.190). On plane x = 0, this function becomes a positive definite quadratic form of 
coordinates y and z,and thus condition 3b of the theorem is also fulfilled. The fulfillment of condition 3c 
follows from equality (4.191)and from the preceding reasoning. 

Therefore, all  the conditions of theorem 1.1 are fulfilled, and theorem 4.19 is also proved. 
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Chapter V. ON THE BOUNDEDNESS O F  SOLUTIONS 

In this chapter we consider cases 1,  4 and 5; i.e., those cases in which there is no success  in estab­
lishing the global stability of the solutions of system (2.15) for any nonlinear f(x) satisfying the GHC. 
Throughout the complete chapter we will suppose that function f(x) is continuously differentiable for all  real 
x and that there exist numbers E > 0 and x,,> 0 such that 

For this assumption we will prove several theorems relating to the behavior of the solutions of system 
(2.15). 

Section 16 

Introducing the following notation, we assume that 

D = - min a'(x) for 1x1 <. x,,. (5.2) 

In the following we will suppose that D 2 0, or in the opposite case the conditions of theorem 4.6 
would prevail. 

Designate further that 

IODXO 
X 1 = 7  +2x09 

x, = lox,, 

m = max If(x) + x (  for 1x1 5 x,, 

We will prove the following lemma. 
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Lemma 5.1 

Suppose that inequalities a > 0 and b < 1are fulfilled. Suppose further that condition (5.1) is fulfilled. 
Let  point p lie in domain l0Ix Ixo, z 2 - x,,, y >- f(x)); moreover, let  

v(p) 2 l R a ,  (5.7)2 

where v is the function of the coordinates of the phase space introducedin equality (4.98). 

Then path +(p, t)  of system (2.15) intersects plane x = x, for t = t, > 0 (by t, is meant the first instant 
of time after t = 0 of the intersection of +(p, t) with plane x = x,). And on path +(p, t) are fulfilled the re­
lations 

y > f(x) for tdo,  t,I, (5.8) 

Proof 

For the proof of this l emma we will consider only path +(p, t )  of system (2.15). In connection with 
this, we will sometimes consider different functions of the coordinates of the phase space simply as func­
tions of time. As an example, v(t) is the value of function v at point +(p, t). For the proof of this lemma, 
we will look a t  two different cases: 

First  we will consider case I. Because of inequality (5.7),the form of function v in equality (4.98), the 
GHC (4.8) and (4.9), and designation (3.29), i t  is easy to verify the inequality 

y(p) > 100 m. (5.10) 

From inequality (5.10) it follows that for sufficiently smal l  t > 0, there is fulfilled the inequality 

From the first equation of system (2.15) we see that x increases for such t along +(p, t). We will now prove 
that, until x _< x, on +(p, t) ,  on this path there is fulfilled the inequality 

y > O.%(P). (5.12) 

From inequality (5.10) and designation (5.5),i t  follows that inequality (5.12) also involves inequality (5.11). 
Accordingly, if we establish the truth of inequality (5.12), then, a t  the s a m e  time, we will prove that +(p, t) 
intersects plane x = x, for t = t, and also relation (5.8). 
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W e  will thus prove inequality (5.12). If z(p) > x(p) and if path +(p, t )  does not intersect plane z - x = 0 
until the intersection with plane x = xl, then inequality (5.12) follows immediately because y increases for 
z - x > 0 along all motions of system (2.15). Now suppose that z(p) - x(p) 5 0 or that z(p) - x(p) > 0, but 
that path +(p, t )  intersects plane z - x = 0 before the intersection with plane x = xl. 

We will prove inequality (5.12) by contradiction. Suppose that a t* > 0 exists such that 

x(t*) 5 x, (5.14) 

and that inequality (5.12) is fulfilled for tc[O, t*); i.e., that t* is the first point a t  which inequality (5.12) is 
violated. Return to the equality 

--_- cx + Da ( x )  
(5.15)dX Y - f W  * 

From this equality and inequalities (5.10) and (5.12) i t  follows that on path +(p, t) for tr[O, t*) there is ful­
filled the inequality 

dz > -cx + ba (x) 
dX 89rn 

But, by hypothesis of the cases considered, b < 1; therefore, cx + ba(x) < cx + a(x) = f(x). Thus from the 
preceding inequality, we see that 

dz 1
z>-" (5.16) 

Integrating the las t  inequality along path +(p, t )  from 0 to t*, by virtue of (5.14) we obtain 

1 
2 (0)-z (t")<-@j (5.17)A,. 

Consider now equality (3.7). Because of this equality, inequalities (5.12) and (5.17) and because 
z(p) = z(0) 2- xo, there results 

dY 
xo +&4f XI Iz > - 8Ym > - 2 0 *  

Integrating this inequality along +(p, t )  on interval 0 < t < t*, we obtain 

(5.18) 
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Since x, < m, the last  inequality contradicts equality (5.13). The contradiction obtained thus proves in­
equality (5.12). 

We will now prove inequality (5.9). W e  have 

Thus, from (4.99) we see that / 81 

(5.19) 

Evaluate the integral standing on the right of this equality. To do so, first evaluate y(t) on interval 0 I 
t I t,. From equation (3.7),w e  obtain 

Since z decreases with increasing time along path +(p,. t )  for tQ0, t,], and since inequality (5.12) is fulfilled 
for tc[O, t,] on +(p, t ) ,  then from the last  inequality and from the condition of case I it follows that 

Integrating this inequality and using inequality (5.10), w e  obtain 

Taking this inequality into account, we can write 

(5.20) 

Moreover, from inequalities (5.10) and (5.12) we obtain 
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Thus, from (5.3) we conclude that 

(5.21) 

From inequalities (5.19)-(5.21), we obtain inequality (5.9). 

We consider now case 11. As in case I, it is easy to establish the inequality 

(5.22) 

In this case we will show that path $(p, t) first intersects plane x = x1 and then plane z - x = 0. Obvi­
ously, this will be proved by the existence of instant t ,  and inequality (5.8). 

Contrary to our assertion, suppose that there exists a t* > 0 such that 

z(t*) - x(t*) = 0, (5.23) 

x(t*) L xl, (5.24) 

and for td0, t*) there is fulfilled the inequality 

Z(t) - x(t) > 0. (5.25) 

Thus, t* is the first instant after t = 0 of the violation of inequality (5.25); inequality (5.25) for t = 0 is ful­
filled a s  proceeds from (5.22). In consequence of equalities (5.23) and (5.22), there exists a t**c(O, t*) such 
that 

z(0) - z(t**) = m. (5.26) 

Return to equality 

dY 2 - x  
dz cx + bz ( x )  ' (5.27) 

From equalities (5.26) and (5.27) and from inequality (5.22), i t  follows that on path $(p, t) for tc(0, t**) there 
is fulfilled the inequality 

dY-< - 100. 
dz 

Integrating this inequality along path $(p, t) from t = 0 to t = t**, because of (5.26) we obtain 

y(t**) > 100m. (5.28) 
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Since inequality (5.25) is fulfilled on interval t** < t < t*, then on this interval, y(t) increases, and, conse­
quently, from the last  inequality we obtain 

y(t) > 1OOm for tc[t**, t*]. (5.29) 

From equality (5.15) and inequality (5.29) we conclude that on path +(p, t) for tc[t**, t*] there is fulfilled 
the inequality 

By integrating this inequality along path +(p, t) for t** _< t ;< t* and by using (5.24), we obtain 

1z ( t * * )  -2 z(t”) <=XI. 

Therefore, from (5.26) we obtain 

1z(0)  - z ( t * )< nt + =”*. 
The last  inequality contradicts equality (5.23) and inequalities (5.22) and (5.24). Thc contradiction ob­
tained thus proves that path +(p, t ) ,  in the case considered, first intersects plane x = x, and then plane 
2 - x = o .  

W e  introduce the following notations. As earlier, Iet t o  and t ,  be the instants of intersection of +(p, t )  
with planes x = x, and x = x, respectively, and let t = t’ be the instant of intersection of +(p, t )  with plane 
x = 2x,. Obviously, 0 5 t o  < t’ < t,. For tc[t’, t,], we will prove that there is fulfilled the inequality 

y(t) > 10m. (5.30) 

Indeed, if  there exists a t**c[O, t’] such that equality (5.26) is fulfilled for t = t**, then, a s  earlier, we will 
prove inequality (5.28). From it,  also, (5.30) will follow since y(t) for td0,  t,] increases along with time. 
But if there exists no such t**, then for td0,  t‘] the following inequality is true: 

z(0)  - z(t)  < m. (5.31) 

In this case,  we will prove inequality (5.30) by contradiction. Suppose that for tdo,  t’] the following 
inequality is fulfilled: 

y(t) 5 1 O m .  (5.32) 

Then, from equality (3.7)and inequalities (5.22) and (5.31), there results 

100 !e 
d Y  xo->­

d X  Y ’ 
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and thus, from (5.32) it follows that 

dY 
-> 10-ni 
dx XO 

on path $(p, t )  for tQ0, t’]. Integrating the las t  inequality along $(p, t )  from t = 0 to t = t’, we obtain 

y(t‘) - y(0) > 1Om. 

Since, by hypothesis, y(0) 20, the las t  inequality contradicts inequality (5.32). The contradiction obtained 
thus proves inequality (5.30). 

Now we will prove inequality (5.9). To do this, we return to equality (5.19). Evaluate the integral 
standing on the right of this equality 

since y(t) increases for tAO, t,]; 

fa0 ( x )(y --f(.Y)) d-Y > E ( y  (f)- 112) (XI -2 X J .  

XO 

Therefore, from (5.30) and (5.3) i t  follows that 

.TI

[ a’( x )  ()I -f (x ) )dx > 5Dy (f)x,. 
X O  

(5.33) 

(5.34) 

The relation (5.9) also proceeds from (5.19), (5.33)and (5.34). Thus, the lemma is proved. 

Lemma 5.2 

Let inequalities a > 0 and b < 1 be fulfilled. Moreover, let  condition (5.1) be fulfilled. Suppose that 

point p lies in one of the domains { O  _< x _< x,,, z 2 0, y = f(x), v 2	LR’]or
2 

where, a s  in lemma 5.1, v is the function defined by equality (4.98). Then path 4(p,  t)  of system (2.15) in­
tersects plane x = x, for t = t ,  < 0 (by t ,  is understood the first instant after t = 0 of the intersection of 
+(p, t )  with plane x = x, in the direction of decreasing time). On path +(p, t )  thereis fulfilled the relations 
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y < f(x) for tdt,,  O), (5.35) 

Proof 

For the proof of this lemma we will consider only one path of system (2.15), the path +(p, t). There­
fore, as for the proof of lemma 5.1, we will write the different functions of the coordinates of the phase 
space as functions of time. Also, as for the proof of lemma 5.1, i t  is easy to  establish the inequality 

z @) >'105 E .  (5.37)
XO 

We will prove that path +(p, t )  intersects plane x = x1 for t = t ,  < 0. For t < 0 and sufficiently close to zero, 
path +(p, t) l ies  in domain {x > 0, y < f(x), z > XI, as is easily seen. Path +(p, t )  can leave this domain 
only through the plane z - x = 0. However, z increases with decreasing time in domain {x > 0). Thus, from 
inequality (5.37) i t  follows that +(p, t )  can intersect plane z - x = 0 (in the direction of decreasing time) 
only after the intersection with plane x = xl. 

Now suppose that path +(p, t) doesnot intersect plane x = x1 for t < 0. Then, obviously, for a l l  t < 0, 
path +(p, t) l ies  in domain (0 < x<xI ,  y < f(x), z - x > 0). 

Consider the following function of the coordinates of the phase space 

'w=- *1 y*$- 1 
(2  -xy. (5.38) 

The time derivative of this function, taken because of the differential equations of system (2.15), as is 
easily verified, is equal to 

W = (1 - b)(z - x ) ~ ( x ) .  (5.39) 

From equality (5.39) i t  follows that function w in domain {x > 0, z - x > 0) decreases with time along 
all motions of system (2.15). Therefore, i t  results that path +(p, t )  in domain (0 < x < xl, y < f(x), z - x > 01 
is bounded for t < 0 and, consequently, for t + - m must go to an equilibrium position different from the ori­
gin. But system (2.15) has only one equilibrium position, the point x = y 2 z = 0. The contradiction obtained 
thus proves that path +(p, t )  for t = t ,  < 0 intersects plane x = xl. In passing, we also established inequality 
(5.35). 

Go now to the proof of inequality (5.36). Let t o  and t' be the instants of intersection of trajectory 
+(p, t) with planes x = xo and x = 2x0 respectively. It is clear that 0 2 t o  > t' > t,. W e  will prove that 

y(t') < - 9m. (5.40) 
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Suppose to the contrary that 

y(t’) 2 - 9m. 

Since y(t) decreases with decreasing time, from the las t  inequality there follows the relation 

y(t) L - 9m for t’ 5 t L 0. (5.41) 

From equality (3.7) and inequalities (5.37) and (5.41) follows inequality 

dY-<-lo- m 
dx XO 

on path +(p, t )  for 0 2 t Z t’. 

Integrating the las t  inequality along path +(p, t )  from t = 0 to t = t’, we obtain 

y(t‘) - y(0) < - 1Om. (5.42) 

But by hypothesis, y(0) = y(p) 5 f(x(p))< m. Therefore, from (5.42) there follows the inequality 

y(t‘) < - 9m. 

This inequality contradicts inequality (5.41). The contradiction obtained thus proves inequality (5.40). 

Now we will prove inequality (5.36) by returning to equality (5.19). Evaluate the integral standing on 
the right hand side of this equality, 

f a .  (x )(y-f ( x ) )dx < -D ( y  (t’)-m)xo, (5.43) 
1’(PI 

since for tc[tl, 01, y(t) increases along with time 

Thus, from (5.3) we find that 

q , ’ ( x )  (y-- f (x))dx < lODy(~’ )x , .  (5.44) 
xo 
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(5.45) 

From inequalities (5.39), (5.43) and (5.44) we obtain 

a’ ( x )  (y  - f ( x ) )dx <0. 
x @) 

And, (5.36) also proceeds from (5.19). 

Thus the lemma is proved. 

Lemma 5.3 

Let inequalities a > 0 and b < 1be fulfilled. Moreover, let condition (5.1) be fulfilled. Suppose that 

l Z lpoint p l ies  in domain (x = 0, y <0, -< 1, 21 >/ where, as before, v is the function defined by
I Y  I 

equality (4.98). Then path +(p, t )  of system (2.15) intersects plane x = x1 for t = t ,  (t ,  is understood as the 
first instant after t = 0 of the intersection of +(p, t )  with the plane x = x, in the direction of decreasing 
time). And on path +(p, t) there are fulfilled the relations 

y < f(x) for tr[t,, 0) (5.46) 

and 

Proof 

As earlier, to prove the lemma, we will consider only trajectory +(p, t )  of system (2.15). In connection 
with this, write the different functions of the coordinates of the phase space as functions of time. A s  in the 
proof of the preceding lemma, i t  is not difficult to establish the inequality 

y(p) < - loom. (5.48) 

Begin moving along path +(p, t) in the direction of decreasing time from point p. We will show that 
until x 5 x, on path +(p, t), the following inequality is fulfilled on it: 

We will prove this inequality by contradiction. Suppose that, for the motion along the path +(p, t )  from point 
p in the direction of decreasing time, inequality (5.49) is violated before inequality x 5 x, is true. Because 
inequality (5.49) is fulfilled for t = 0, there exists a t* < 0 for which 

Yb*) = 0.9y(p), (5.50) 
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x(t*) 5 x, (5.51) 

or 

y(t) < 0.9y(p) for tr(t*, 01, (5.52) 

x(t) 5 x, for tr[t*, 01. (5.53) 

Return now to equality (3.7). From this equality and inequalities (5.52)and (5.48),and from the fact that 
z(t) increases with decreasing time for t&*, 01, i t  follows that on path +(p, t )  for tc[t*, 01 thereis fulfilled 
the inequality 

dx*<2 .  

Integrating this inequality along +(p, t )  from t = 0 to t = t* and using inequalities (5.51)and (5.53),we ob­
tain 

Inequalities (5.48)and (5.54)contradict equality (5.50). The contradiction obtained thus proves the correct­
ness  of inequality (5.49). 

Now we will prove that path +(p, t) for t = t ,  < 0 intersects plane x = x,. Assume to the contrary that 
this is not so. Then for all t < 0, path +(p, t) lies in domain (0 < x < x,, y < 0.9y(p)l. We will show that 
$(p, t) is then bounded for t < 0. If $(p, t) l ies in domain (z - x > 0) for all t < 0, then the boundedness of 
path +(p, t) for t < 0 is proved in the same way a s  for the proof of lemma 5.2,i.e., by considering the func­
tion w introduced by equality (5.38). But let  there exist, even if only one, an instant of time t' < 0 such that 
point +(p, t') l ies in domain (0 5 x 5 x,, y < 0.9y(p), z - x 5 0). Then path +(p, t) l ies in this domain for all  
t < t'. Indeed, i t  can leave this domain only through the plane z - x = P. But, as inequality (3.2)shows, for 
x > 0 and y < 0, all  motions of system (2.15)intersect plane z - x = 0,going with decreasing time from 
domain ( z  - x > 01 into domain ( z  - x < 01. Therefore, path +(p, t) for t < t' lies in domain (0 < x L x,, y < 
0.9y(p), z - x < 01. In this domain z(t) increases with decreasing time and is bounded below by the number 
x,,and y(t)  increases and is negative. Thus, path $(p, t )  for t < 0 is bounded and, for sufficiently small t,  
completely lies in either domain {O < x 5 x,, y < f(x),  z > xi or domain { O  < x L x,, y < f(x), z - x < 0). Con­
sequently, for t + - w, path +(p, t) goes to an equilibrium position of system (2.15)different from point x = 

y = z = 0. This contradicts the fact that system (2.15)has only one equilibrium position. But the contradic­
tion obtained proves that $(p, t )  for t = t ,  < 0 intersects plane x = x,. From inequality (5.49),inequality 
(5.46) follows. 

Now, evaluate y(t)  on the interval t ,  t _< 0 from below. From c q ~ u l i t y(5.1s)and inequalities (5.48) 
and (5.49), we see that 



, 

p 

on path +(p, t )  for tdt,,  01. Integrating this inequality along path +(p, t) from t = 0 to t = t,, we obtain 

Owing to equality (3.7), inequalities (5.48), (5.49) and (5.55), and the condition that mpx5 1, we see that 
on path +(p, t) for te[t,, O] thereis fulfilled the inequality 1 Y (PI I 

9 > - 2 .dx 

Integrating this inequality along +(p, t )  from t = 0 to t = t,, we obtain 

Thus, it is clear that 

y( tJ  > 2 . Y(0). (5.56) 

Now w e  will prove inequality (5.47). Evaluate the integral standing on the right side of equality (5.19). 
Derived from inequality (5.56), 

From inequality (5.49) follows 

Therefore, from (5.3), it results 

(5.58) 

From inequalities (5.48), (5.57) and (5.58)proceeds the relation 

(5.59) 

From inequality (5.59) and equality (5.19) follows inequality (5.47). 

Thus the lemma is proved. 
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Lemma 5.4 

Let inequalities a > 0 and b < 1 be fulfilled. Moreover, let  condition (5.1) be fulfilled. Suppose that 

point p lies in domain { x  = 0, y < 0, z < 0, -Y 5 1, v _> l R z  1where, as before, v is a function of the coordi-
Z 2 

nates of the phase space introduced by equality (4.98). Suppose further that there exists a t, < 0 such that 
on trajectory +(p, t) there is fulfilled the relations 

y < f(x) for t < dt,, 01. (5.61) 

Then path +(p, t )  intersects plane x = x, for t = t,e(t,, 0), and there occurs the following inequality: 

Proof 

Being interested in the proof for only path +(p, t )  of system (2.15), as before we will consider func­
tions of the coordinates of the phase space simply as functions of time. Assume that c=  9x,. Because of 
conditions (5.60) and (5.61), we can assert  that there exist instants of time to, t ,  and t' such that 

and these instants are solely on the interval of time (t,, 0). Obviously, t, < t' < t ,  < t o  < 0. From the condi­

tions that v L 1RZand ~ 

Y(P) _< 1, and from notation (5.6) i t  is easy to see inequality
2 Z(P)  

100e. (5.64)
XO 

We will prove that on interval tc[t,, 01 there is fulfilled the inequality 

z(t) < 0.9Z(O). (5.65) 

We will prove this inequality by contradiction. Suppose that there exists a t*E[t,, 01 such that 

z(t*) = 0.9Z(O) (5.66) 

and that inequality (5.65) is fulfilled for te(t*, 01. From inequality (5.65) we see that z(t) < 0 for tc[t*, 01, 
and a s  the second equation of system (2.15) proves equulity (5.39),. y(t) and w(t) increase with decreasing 
time for tc[t*, 03. Therefore, we have 

w(0) 5 w(t*). 
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From the same form of function w, we obtain 

Z2(O)  + y2(0)L [Z(t*) - x(t*)l' + y2(t*). (5.67) 

But because y(t) increases with decreasing time for tc[t*, 01, and, moreover, because of condition (5.61), we 
see that y(t) < m for tc[t*, 01. Therefore, from inequality (5.67) follows relation 

zz(0)5 [z(t*) - m12 + mz. 

Thus, from equality (5.66) we obtain 

~ ' (0 )_< o.81z2(0) - 1.8z(O)m + 2m2. (5.68) 

This inequality contradicts inequality (5.64), and the contradiction obtained thus proves inequality (5.65). 

Now we will prove that 

y(t) < - 8m (5.69) 

for tr[t', 01. Since y(t) decreases with increasing time for tt[t,, 01, for the proof of inequality (5.69), i t  is 
sufficient to establish that 

y(t') < - 8m. (5.70) 

We will prove this inequality. Suppose that i t  is not fulfilled; then for tdt,, t'] thereis fulfilled 

y(t) 2- 8m. (5.71) 

In consequence of equality (3.7) and inequalities (5.64), (5.65) and (5.71), on path +(p, t )  for tr[t,, t'] there 
is fulfilled inequality 

Integrating this inequality along +(p, t) from t = t' to t = t,, we obtain 

y (t.) .--y (U)> 10 E(x ,  -�1> 10n. 
Since, by hypothesis, y(t2) 5 f(x(t,)) 5 m, from the las t  inequality we obtain 

This inequality contradicts inequality (5.71). The contradiction obtained proves inequality (5.70) and, with 
this, also (5.69). 
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From equality (3.7) and inequalities (5.64), (5.65) and (5.69), we see that for tdt', 01 on $(p, t )  there is 
fulfilled inequality 

Multiplying this inequality by 2y < 0 and integrating the inequality thus obtained along the path $(p, t) from 
t = 0 to t = t', we obtain 

Accordingly, 

y (0) < -v- (PIvc. (5.72) 

On the other hand, from equality (3.7) and inequalities (5.64), (5.65) and (5.69), we see that for tc[t', 01 on 
path $(p, t )  there is fulfilled inequality 

Multiplying this inequality by y < 0 and integrating on the interval t ,  5 t 5 0, we obtuin 

or 

Thus, from (5.72) and (5.69) we obtain 

And as a result, from (5.72) we see that 

Since 6= 9x,, from the las t  inequality w e  obtain 

Now we will prove inequality (5.62). To do this, we return to equality (5.19) and evaluate the integral 
standing on the right side of this equality, 

94 



(5.74) 

On the other hand, 

Thus, from (5.73) and (5.3), we see that 

(5.75) 

From inequalities (5.74), (5.75) and (5.69), there follows the inequality 

(5.76) 

Inequality (5.62) follows from equality (5.19) and inequality (5.76). 

The lemma is proved. 

Lemma 5.5 

Let inequalities a > 0 and b < 1 be fulfilled. In addition, let condition (5.1) be fulfilled. Suppose that 

point p l ies in domain (x = 0, y < 0, z < 0, -Y 5 1, v 2 $ R z I  where, as earlier, v is the function introduced by 

equality (4.98). Suppose also that there exists no t, < 0 such that relations (5.60) and (5.61) are fulfilled on 
path $(p, t) of system (2.15). Then there exists a T < 0 such that on path $(p, t )  it results that 

x(T) = 0. (5.77) 

x(t) > 0, z(t)  < 0 for tc(T, 0). (5.78) 

Proof 

Begin moving along path $(p, t )  from point p in the direction of decreasing time. W e  will show that, 
until points of path +(p, t )  lie in domain (0 5 x 5 x2, y 5 10m), on the path is fulfilled inequality 

z(t) < 0.9z(p). (5.79) 
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Note that by the hypotheses of the lemma, inequality (5.64) is fulfilled. We will prove inequality (5.79) by 
contradiction. Suppose that there exists a t* < 0 such that 

z(t*) = 0.9z(p), (5.80) 

and for tdt", 01 i t  results that +(p, t)dO 5 x 2x,, y 5 10m, z _< 0.9z(p)]. It is clear that y and w increase 
with decreasing time along path +(p, t) for tc[t*, 01. Therefore, we have 

w(0) 5 w(t*). 

From the form of the function w i t  follows that 

z'(p) + y'(p) I[z(t*) - x(t*)I2+y'(t*). (5.81) 

But for tc[t*, 01 along +(p, t),  y increases with decreasing time. Moreover, y I 10m by hypothesis; therefore, 
from inequality (5.81) we obtain 

z'(p) L [z(t*) - m]'+ 1oOm2. 

And, accordingly, from (5.80) we obtain 

zz(p) 5 0.81z2(p)- 1.8z(p)m + 101m'. 

This inequality contradicts inequality (5.64); the contradiction obtained thus proves inequality (5.79). 

We will show that there exists instantsof time t = t ,  < 0 such that on +(p, t )  there results 

and for tc(t,, 01, +(p, t)c(O 5 x 5 x,, y < f(x)]. 

Indeed, in domain (0 5 x 5 x2, y < f(x)]along +(p, t) ,  y increases with decreasing time due to  (5.79); z 
a lso increases and, because of (5.79), is bounded. Therefore, path +(p, t )  goes into domain (0 L x 5 x2, y < 
f(x))for decreasing time. But i t  cannot intersect plane x = x, for y < f(x), for the instant of intersection 
t = t, would satisfy relations (5.60) and (5.61). Therefore, path +(p, t) intersects surface y - f(x) = 0 for 
t = t,, and +(p, t)dO 5 x 5 x,, y < f(x)l for tc(t,, 01. 

It is easy to see that path +(p, t )  goes into domain (0 5 x 5 x,, f(x) < y _< lOm] for t < t,. If for this 
case +(p, t) intersects plane x = 0, then the instant of intersection t = T < t,, because of inequality (5.79), 
satisfies relations (5.77) and (5.78). Suppose that for t = r < t,, +(p, t )  intersects plane y = 10m, and for 
this, on the path, i t  results that x(r)c(O, x,). In consequence of equality (5.15), until the points of path 
+(p, t) l ie in domain (0 _< x _< x,, y 2 lOm], on it is fulfilled the inequality 

dz >-0.2. 

Therefore, for that t < r for which +(p, t )  lies in domain (x 01, on i t  is fulfilled 

z(t) < 0.8z(p). (5.83) 
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From equality (3.7) it results that for t < T for which path +(p, t )  lies in domain (x 2 01, there is fulfilled 
inequality 

Thus, i t  follows that path +(p, t) is bounded for that t. Consequently, i t  enters domain (x > 0) for t < r. Ac­
cordingly, there exists an instant of t ime T < 0 which satisfies relations (5.77) and (5.78). 

The lemma is proved. 

Theorem 5.1 

Let inequalities a > 0 and b < 1 be fulfilled. In addition, let condition (5.1) be fulfilled. Let  point p 
l ie in plane x = 0. Suppose that there is fulfilled inequality 

Y '(PI + ~ ' ( p )< RZ. (5.84) 

"F 

Moreover, suppose that point $(p, T) l ies  in plane x = 0 where T > 0. Then the following inequality is true: 

Proof 

For the proof of this theorem, we will consider only path +(p, t) of system (2.15). In connection with 
this, as earlier, the different functions of points of the phase space will always be considered as functions 
of time. For definiteness, we will say that y(p) 2 0. In this case,  if z(p) 5 0, then we will say that y(p) 2 0. 
Without losing generality, we can say that T is the first instant after t = 0 of the intersection of path $(p, t )  
with plane x :0, i.e., that x(t) > 0 for tc(0, T). 

ConsideAriist the case when z(p) _< 0. In consequence of the third equation of system (2.15) and the 

GHC,dZ < 0 for tc(0, T); therefore, z(t)  < 0 for tc(0, TI, and, consequently, function w, introduced by equalitydt 
(5.38), decreases along +(p, t )  for te(0, T). Thus, we have 

w(T) < w(0). (5.86) 

Inequality (5.85) also follows from the definition of the function w and from (5.86). 

Now let z(p) > 0. Suppose first that on the interval of time 0 < t < T I  path +(p, t) does not intersect a 
part of surface (y = f(x), 0 < x 5 xo, z - x ?. 0), going out of domain (y - f(x) < 0)  into domain (y - f(x) > 0). 
As proceeds from lemma 3.3, path +(p, t) for t = ~ ( 0 ,T) intersects surface y - f(x) = 0, going for t = T from 
domain (y - f(x) > 0)into domain (y - f(x) < 0). Suppose that X(T)5 xo. Then path +(p, t )  for tc(0, T )  

97 



intersects surface y - f(x) = 0, going from domain (y - f(x) > 01 into domain (y - f(x) < 01 only a t  one time for 
t = r. Indeed, path +(p, t) can go across from domain (y - f(x) > 01 into domain (y - f(x) < 01 only with an 
intersection with a part of surface (y = f(x), 0 < x _< xo, z - x 2O f ,  this, by hypothesis, is impossible. Thus, 
for tc(0, T), x(t) has only one maximum, which occurs for t = r; consequently, x(t) _< xo for tc[O, TI. 

We will prove that inequality (5.85) is fulfilled in the case considered. But suppose that inequality 
(5.85) is not fulfilled; then there is fulfilled the inequality 

v(T) 2	l R z ,  (5.87)2 

where v is a function of the points of the phase space introduced by equality (4.98). If z(T) 20 or if z(T)<0 

and- z(T) < 1, in consequence of equality (5.87) and lemmas 5.2 and 5.3, path +(p, t )  intersects plane x = xl
YO) 

for tc(0, T), which contradicts inequality x(t) _< x, for 0 < t < T. But i f  z(t) < 0, -<Y(T) 1, and path +(p, t )  for 
2 0 )  

tc(0, T) does not intersect plane x = xz, then because of lemma 5.5, it must be true that z ( 0 )  = z(p) < 0; this 
contradicts supposition z(p) > 0. The contradictions obtained thus prove inequality (5.85) in the case con­
sidered. 

Now let X(T) > x,. Then path +(p, t )  intersects plane x = x, for t = t,c(O, T). By t = t o  is understood 
the first instant after t = 0 of the intersection of +(p, t) with plane x = x,. Let t = t, be the last  instant be­
fore t = T that path +(p, t )  intersects with plane x = xg. From the condition that path +(p, t )  does not inter­
sect  a part of the surface (y = f(x), 0 < x < x,, z - x 2 01, going from domain (y - f(x) < 01 into domain (y ­
f(x) > 01, in this case it  follows that path +(p, t) lies wholly inside the half-space (x 1 x,] for tc[t,, t,] and in 
the zone (0  5 x < x,) for td0,  t J  and tc[t,, TI. 

21We will now prove inequality (5.85) in the case considered. If v(t) < -R2 for tc[O, TI, inequality (5.85) 

follows immediately from the form of function v. Suppose that an instant of time t = & [ O ,  TI exists such that 

v(8) = -R2;for this case we will say that 8 is the first such instant, i.e., that v(t) < -RZfor tc[O, e).  Since1 1
2 2 

*< 0 for x 2x,, a s  proceeds from (4.99) and condition (5.1) of the theorem, point +(p, 8)  mu. . in zonedt 
(0 < x 5 x,]. Thus, one of two conditions must be fulfilled: either &[O,  t J ,  or Oc[t,, TI. 

First suppose that &[t,, TI. Inequality (5.85) will be proved by contradiction. Suppose that i t  is not 
fulfilled, i.e., 

v(T) 2	LR'. (5.88)2 

From this inequality, from the fact that z(p) > 0, and from lemmas 5.2-5.5, +(p, t )  consequently intersects 
plane x = x t  for t = tzc(to,t3). Thus thereoccurs the inequality 

1v(tJ > p. (5.89) 
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However, t < t _< 8, and by the definition of 8, v(t) < 1R2for all  te[O, 8). This shows that inequality (5.88)2 
in the case considered also cannot be realized. Consequently, inequality (5.85) is fulfilled in the case  con­
sidered. 

Now let &[O, tJ. We will show that in this ca se  

z(e) > - xo. (5.90) 

Suppose to the contrary that 

z(e)I- xo. (5.91) 

W e  will show that then 

z(0) IO. (5.92) 

.(e)Consider first the case -5 1. Consequently, by definition of the instant and from the form of function v,Y ( a  
y(8) > l oom.  (5.93) 

Assume that there exists a t*c[O, 8) such that 

z(t*) = 0 (5.94) 

and 

z(t) < 0 for t&*, 81. (5.95) 

Then y(t) increases with decreasing time for tc(t*, 81. Therefore, from inequality (5.93) and from equation 
(5.15), it follows that on +(p, t) for t&*, 81 thereis fulfilled the inequality 

Integrating this inequality along path +(p, t) from t = t* to t = 8 and using inequality (5.91), we ascertain 

that equality (5.94) cannot be realized; consequently, inequality (5.92) must be fulfilled. Now let a<
TZ(t-4 I- 1 

In this case,  inequality (5.92) is proved in the s a m e  way as for the proof of lemma 5.5. Thus, (5.92) is ful­
filled by supposition (5.91). However, inequality (5.92) contradicts the fact that z(p) > 0. The contradiction 
obtained proves inequality (5.90). In consequence of inequality (5.90) and lemma 5.1, path +(p, t )  intersects 
plane x = xl for t = tle(tO,t,) and 

v(tl) < v(e) = -21RZ. (5.96) 
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We will now prove inequality (5.85) by contyadiction. Suppose that inequality (5.88) is fulfilled. Then, 
because z(p) > 0 and from lemmas  5.2-5.5, we see tha t  path $(pl t) intersects plane x = x1 for t = t2c(tl, t,). 
And, consequently, 

v(t,) > v(T) 2	1R'. (5.97)2 

But as was proved above for tdt,,  t2].C [to, t,], path $(p, t) lies in half-space (x 2x,]. However, as equality 
(4.99) and condition (5.1) of the theorem prove, function v(t) decreases for x 2xo. Accordingly, it follows 
that 

The last  inequality contradicts inequality (5.96) and (5.97). The contradictions obtained thus prove in­
equality (5.85). 

Now we consider the case when path +(p, t) for tc(0, T) intersects a part of surface (y = f(x), 0 < x 5 x,, 
z - x 201,for this going from domain (y - f(x) < 01 into domain (y - f(x) > 01. It is not difficult to see that 
the number of such intersections is finite. Le t  r l ,  r2, ..., % be a sequence of instants of such intersec­
tions. Then we have 

O < T 1 < T 2 <  ... < 7 k  <T. (5.98) 

On the intervals of time 0 < t < r l ,  r1 < t < r2, ..., Q - ~< t < Q, Q < t < T, path +(p, t )  does not intersect a 
part of the surface (y = f(x), 0 < x 5 xo, z - x 201 in going from domain (y - f(x) < 01 into domain (y - f(x)> 01. 
Therefore, by reasoning analogous to that used for the proof of inequality (5.85), we will finally prove in­
equality 

1v(ri) < - R 2  (i = 1, 2, .. ., k). (5.99)2 

1 1And from inequality V(7k) < -R2,  we conclude inequality v(T) < - R 2  which coincides with (5.85).2 2 

Thus the theorem is proved. 

Analogously, the following theorem may be proved. 

Theorem 5.2 

Let inequalities a > 0 and b < 1 be fulfilled. Moreover, let condition (5.1) be fulfilled. Let point p lie 
in plane x = 0. Suppose that there is fulfilled inequality 

yz(p) + z'(p) 2R2. (5.100) 
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Assume further that point $(p, T) lies in plane x = 0 where T > 0; then there is true the inequality 

From the results of reference 12 we see that, in the cases considered, the null solution of system 
(2.15) is asymptotically stable in the sense  of Lyapunov. Therefore, following from (3.30), there exis ts  a 
domain A of the phase space such that for solutions x = x(t), y = y(t), z = z(t) of system 2.15, relation 

l im x = l im y = l im z = 0 for t + + (5.102) 

is fulfilled only when the initial point of this solution lies in domain A. The domain is the domain of sta­
bility and, as shown by N. P. Yerugin (ref. 30), is made up of i ts  invariant s e t  (ref. 26). The complement of 
A relative to the entire phase space is designated by B and is the s e t  of instability. The se t  B is empty 
only if the null solution of system (2.15) is globally stable. 

The following theorem is true. 

Theorem 5.3 

Let inequalities a > 0 and b < 1 be fulfilled. Let condition (5.1) be fulfilled. If the set  B is nonempty 
and if pcB, then path +(p, t )  of system (2.15) has points in domain {x = 0, y2 + z2  < R]. 

Proof 

Following from theorem 3.1 there'exists a sequence of instants of time 

t ,  < t, < t, < . .. + + m, (5.103) 

such that points +(p, tk) lie in plane x = 0 for all real k. 

Contrary to the assertion of the theorem, assume that path $(p, t )  has no points in domain {x = 0, ya + 
zz  < R'); then for all real k it is true that 

on path $(p, t). Accordingly, by theorem 5.2 we have 

(5.105) 

Because of inequality (5.105) and the Bolzano-Weirstrasse principle of choice, we can say that the sequence 
of points $(p, tk) converges. Assume that 
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lim y (p, t k )  =q. (5.106)
k*+-

From inequality (5.104) we obtain 

y2(q) + z2(q) 2 R2. (5.107) 

On the other hand, from (5.105) and (5.106), on path $(p, t )  thereis fulfilled inequality 

for all real k. 

Let t* be an instant of time such that +(p, t*) lies in plane x = 0. Then because of theorem 5.2 and 
relations (5.103), (5.104) and (5.108), on path $(p, t) we have 

y2(t*) + z2(t*) > y2(q)+ z2(q). (5.109) 

Now consider path $(q, t )  of system (2.15). This path will obviously be an w-limit for $(p, t).  Path 
$(q, t )  for all t ? 0 cannot lie in one of the half-spaces (x 201 or ( x  5 O f  since, in this case,  according to 
theorem 3.1, path $(q, t) would go to origin. This is impossible because p, by assumption, belongs to the 
set  of instability B. Consequently, a t' > 0 can be found such that path $(p, t )  for t = t '  crosses over from 
one of the half-spaces {x ? 0) and (x _< O f  into the other. Due to theorem 5.2 we will have 

$(q, t ')dx = 0, y2 + z z  < y2(q)+ z2(q)l. (5.110) 

By the theorem on integral continuity, a t* can then be chosen such that also 

$(P# t*)�IX = 0, y2 + z 2  < y2(q)+ z"q)f. (5.111) 

The last  relation contradicts inequality (5.109). 

The contradiction obtained thus proves the theorem. 

Theorem 5.4 

Let inequalities a > 0 and b < 1 be fulfilled. Moreover, let condition (5.1) be fulfilled. Then there 
exists such an M > 0 that from any point p of the phase space a T, can be found such that for t ? T, on path 
$(p, t )  of system (2.15) there are fulfilled the inequalities 
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Proof 

Consider an arbitrary path +(p, t)  of system (2.15). If +(p, t) goes to origin for t -f + 00, then the asser­
tion of the theorem is obviously fulfilled for it. However, suppose that +(p, t) does not go to  origin. Then 
by theorem 5.3, +(p, t )  intersects circle {x = 0, y2  + z z  < R21for t = T,. Assume that 

N = max If(x) + X I  for 1x1 5 R. (5.113) 

W e  will show that on path +(p, t) for t 2 T, thereis  fulfilled the inequality 

IY I < 3N- (5.114) 

Let t ,  > T, be the first instant of time after T, of the intersection of path +(p, t)  with plane ‘x = 0. W e  
will show that on the interval T, 5 t 5 t ,  on +(p, t)  there is fulfilledinequality (5.114). For definiteness we 
will say that y(+(p, Tp)) L 0, but if  z(+(p, T,)) 5 0, then y(+(p, T,)) > 0. If z(+(p, Tp)) 5 0, their, as men­
tioned earlier, y decreases along +(p, t )  for tc[T,, t,]. Consequently, for such t thereis fulfilled the in­
equality 

From the last  inequality and from theorem 5.1, we see that IyI < R on path +(p, t )  for tc[Tp, t,] and, 
thus, (5.114) a lso follows. 

Now let z(+(p, Tp))>O. Since y’(+(p, T,)) + z’(+(p, T,)) < RZ,then z(+(p, T,)) < R. The maximum y, 
as mentioned in section 3, l ies  on plane z - x = 0. But along +(p, t ) ,  z decreases for tc[Tp, t,]; therefore, 
the intersection of +(p, t )  with plane z - x = 0 on interval tc[T,, t,] has  an abscissa  l e s s  than R. W e  will 
show that for tc[T,, t,] on path +(p, t )  there results 

y < 3N. (5.115) 

Indeed, if  inequality y 52N is fulfilled, inequality (5.115) follows immediately from it. However, if this in­
equality is not fulfilled, then, as is easily seen, thereexists a t*c(Tp, t,) such that 

y(t*) = 2N and z(t*) - x(t*) > 0 (5.116) 

on path +(p, t). Accordingly, until the intersection with plane z - x = 0 on path +(p, t) ,  inequality y 2 2N 
will be fulfilled. Because of inequality, because z(+(p, t ) )  < R for tc[Tp, t,] and because of equality (3.7), 
for t 2 t*, andsuch that z(+(p, t))  - x(+(p, t ) )  - x(+(p, t)) > 0, there is fulfilled the inequality 

dY - 2--x 

dx -y - - f (x )  <1. 

Integrating this inequality along +(p, t )  from t = t* to  the point of intersection of +(p, t) with plane 
z - x = 0 and using equality (5.116) and the fact that x(+(p, t)) < R lies on plane z - x = 0, we obtain in­
equality (5.115). 
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Now we will show that for tc(T,, t,) on path $(p, t )  there is fulfilled inequality 

y > - 3N. (5.117) 

Since the minimum of y occurs on plane z - x = 0, the minimum of this becomes the maximum. From (5.38) 
and (5.39), between the maximum and the minimum y, function w along $(p, t) decreases with increasing 
time. Consequently, from the form of function w, in the instant of minimum, y is less in absolute value than 
at  the instant of the preceding maximum. Therefore, (5.117) results and from it also (5.115) and (5.114). 

Since x decreases along path $(p, t) for y 5 f(x), then from the GHC f(x) > cx, i t  results for x = 0 that 
on path $(p, t) for tr[Tp, tl] there is fulfilled the inequality 

x < -1 max y.
C 

Thus, from (5.114) i t  follows that for tdT,, t,] on path $(p, t )  there is fulfilled the inequality 

31x1 < - N .  (5.118)
C 

Since z decreases on interval T, 5 t 5 t, along +(p, t), in consequence of theorem 5.1, on the interval 
T, 5 t 5 t ,  on $(p, t )  

IzI < R. (5.119) 

Inequalities (5.114), (5.118) and (5.119) are proved only for the interval of time [T,, t,], but because of 
theorem 5.1, obviously, it is also true for all t 1 T,. Therefore, the assertion of the theorem also follows. 

Section 17 

In this section we consider the case when a > 0, 0 _< b < I ,  c _> 1 and condition (5.1) is fulfilled. We 
will prove in these cases one theorem relative to the arrangement of the trajectories of system (2.15). Des­
ignate domain (x = 0, y > 0, z > 0, y 2+ z 2  < R1 by P. Consider a periodic motion of system (2.15). As fol­
lows from theorems 3.2, 3.3, and 5.3, i t s  trajectory intersects domain P. Call the periodic motion of system 
(2.15) regular if i t s  trajectory has a point in common with domain P. 

Theorem 5.5 

Let inequalities a > 0, 05 b < 1 and c 1 1 be fulfilled. Moreover, let function f(x) be continuously 
differentiable for all  real x, and let such positive numbers E and x, exist that condition (5.1) is fulfilled. 
Then, for the trivial solution x = y = z = 0 of system (2.15) to be globally stable, i t  is necessary and suffi­
cient that system (2.15) not have a regular periodic motion. 
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Proof 

The necessity of the theorem's conditions are obvious. We will prove the sufficiency. 

Let system (2.15) not have a regular periodic motion. We must then prove that all motions of system 
(2.15) go to  origin for t + + W. Suppose to the contrary that there exists a point q of the phase space for 
which trajectories +(q, t)  do not go to  origin for t + + m. Because of theorems 3.2, 3.3, and 5.3, and not 
violating the generality, we can say that qcP. 

Consider now an  arbitrary point PEP, p f (0, 0, 0) and paths +(p, t )  of system (2.15). Due to theorems 
3.2, 3.3 and 5.1, there exis ts  a tp > 0 such that +(p, tp)cP. For this, tp designates the first instant after 
t = 0 of the intersection of path +(p, t)  with domain P. We place every point pcP, p f (0, 0, 0) in correspond­
ence with a point +(p, tP) and point (0, 0, 0) with itself. By I we denote the transformation of the closed 
domain H into itself obtained in this way. From the theorem on uniqueness, the theorem on integral con­
tinuity and theorems 3.2, 3.3, and 5.1, i t  follows that the transformation I is mutually singlevalued and 
mutually continuous. In addition, it preserves operations. Indeed, we take an arbitrary closed contour 1 
lying in P, and in some way we orient it. W e  examine surface +(l, t )  until i t s  intersection with P following 
t = 0. This intersection obviously gives us contour I(1). The orientation of contour I(1) cannot coincide with 
the orientation of contour 1 only in that case i f  +(l, t )  makes an intersection of the trajectory on the surface, 
which cannot be by virtue of the theorem on uniqueness. 

Consider the sequence I"(q). For all natural n i t  results that I"(q)cP. Since domain P is bounded, 
sequence I"(q) has  a limit  point lying in the closed domain P. Let q, be any limit point of sequence I"(q). 
In consequence of theorems 3.3 and 5.1,point q, coincides with the origin if i t  l ies on the boundary of the 
domain P. But the point q, is a limit for sequence I"(q); therefore, it is an a-limit for trajectory +(q, t)  and, 
consequently, q, cannot coincide with the origin. Indeed, if  q, were to coincide with point x = y = z = 0, 
path +(p, t)  would go to origin for t + + m since point (0, 0, 0) is a Lyapunov stable equilibrium position of 
system (2.15). And this contradicts the choice of point q. Thus, there exists a subsequent I"(q) of se­
quence I"(q) for which is fulfilled the relation 

(5.120) 

Therefore, we have a homeomorphic and operation-preserving transformation I of plane domain P into 
itself. This transformation is such that there exists a point qcP for which relation (5.120) is fulfilled. How­
ever, from the theorem of Brouwer (ref.. 31), transformation I has  a stationary point p, lying in domain P (and, 
consequently, different from the origin). By definition of transformation I, path +(pol t)  shows itself t o  be a 
regular periodic motion of system (2.15). This contradicts the hypothesis of the theorem, and the contradic­
tion obtained thus proves the sufficiency of the conditions of the theorem. 

W e  note that Massera (ref. 32) pointed out a possible application of the Brouwer theorem for the investi­
gation of a s imi l a r  system of differential equations, 

Assume again that inequalities a > 0, 0 _< b < 1,  c 21 and condition (5.1) are fulfilled. 
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Suppose that the null solution of system (2.15) is not globally stable. As earlier let A be the stability 
domain and B the se t  of instability. Let p g  and p f (0, 0, 0); we will, as before, designate by t, the first 
instant of time after t = 0 in which path +(p, t) intersects with domain P. 

W e  will prove that there exists a number T such that tp < T if  pcF- B. Assume to the contrary that 
such T does not exist; then there exists a sequence of points p ~ c p .B such that 

lim tPk=+w. (5.121)
k- + m  

Since se t  P - B is closed and bounded, we can say that the sequence of points Pk converges to a point of 
this set;  i.e., we can say that 

But point (0, 0, 0) obviously lies in domain A; therefore, q f (0, 0, 0). On the other hand, because of qcp 
there exists such an instant of time tq > 0 that +(q, tq)cP. Accordingly, from the theorem on the continuous 
dependence of the solutions on the initial conditions and from relation (5.122), i t  follows that for sufficiently 
large k there takes place the inequality 

tPk < 2tq. (5.123) 

The last  inequality contradicts relation (5.121), and the contradiction obtained proves the existence of num­
ber T. Proceeding from the existence of such a number and from theorems 3.2, 3.3 and 5.3, any recurrent 
(ref. 26) trajectory of system (2.15) different from the equilibrium position produces i t s  vibration regime (the 
concept of vibration regimes and some conditions for their existence were given by V. V. Nemytskiy in 
reference 22). Therefore, theorem 5.6 follows. 

Theorem 5.6 

Let inequalities a > 0, 0 _< b < 1 and c 2 1 be fulfilled. Moreover, let the function f(x) be continuously 
differentiable for all  real x and let such positive numbers c and xo exist that condition (5.1) is fulfilled. 
Then any trajectory of system (2.15) for t + + M not going to  origin has in itself an w-limit s e t  of vibration 
regimes. 

The assertion of this theorem results because any positively stable trajectory (in the sense of LaGrange 
trajectories) has in itself an w-limit s e t  of recurrent motions (refs. 26, 33) and because in the conditions of 
the theorem any recurrent trajectory of system (2.15) produces i t s  vibration regime. 
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Chapter VI. ON PERIODIC MOTIONS 

In this chapter we will consider system (2.15) for the fulfillment of conditions of cases 1, 4 or 5; i.e., 
we will assume that a > 0 and b < 1. Moreover, we will suppose that inequality cz+ b > 0 is fulfilled where 
number c is given by equality (4.6). Thus, we consider here all  of those cases in which the global stability 
of the null solution of system (2.15) could not be established for any nonlinearity f(x) satisfying the GHC. 
In these cases we establish certain sufficient conditions for the existence of periodic motions of the solu­
tions for system (2.15). 

Section 18 

W e  introduce the following designation: 

k = m a x  1, ' I  .I 
Let H and h be arbitrary numbers satisfying the following inequalities: 

1< h _< H for b 20 
C 

and 

1< h S H  < - cb for b <  0. (6.3)
C 

Since we assume that inequality c2+ b > 0 is fulfilled for the remainder of this chapter, then inequality 
(6 .3)is noncontradictory. 

Assume that 

l . l ( l -b )cH;  1.8 

and 

p = A +0.3~'+ 0.8+0.3 
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Now let E and 6 be arbitrary numbers satisfying the following inequalities: 

0 < E - 6 I6', 

0 < (c + H)E< 0.1, 

1 r & ~ + l . 8(c + - c"> H o 3 < < . 1 8 ( h - $ ) 8 ,  

(6.10) 

Suppose that function a(x) satisfies the following conditions: 

hx 5 a(x) _< Hx for 0 5 x 5 6, (6.11) 

0 < a(x) 5 Hx for 6 5 x _< E, (6.12) 

(6.13) 

In these cases ,  the numbers h, H, 6 and E must satisfy inequalities (6.2), (6.3)and (6.6)-(6.10). We will as­
sume that conditions (6.11)-(6.13) are fulfilled. 

On plane x = 0 consider a point po with coordinates x = 0, y = 0, z = ck; point p1 with coordinates x = 0, 
y = k, z = ck; and the segment of the straight line (x = 0, z = ck]  contained between points po and pl. Let pa 
be a point of segment L with the y component ak so that ac[O.l]. We will consider a path +(pa, t) of system 
(2.15). For shortened notation of these trajectories and all functions along them, we will supply a as an in­
dex where a~[O. l ] .  For example, &(t) is the trajectory +(pol t), yl(t) is the y component of trajectory 
+(pl, t),  and zo(t)is the z component of the trajectory +(po, t). 

As seen from the reasoning of section 3, all trajectories +,(t) for sufficiently s m a l l  positive t l ie in 
half-space x > 0. Designate by To the first instant after t = 0 of the intersection of path &(t) with plane 
x = 0. In this case,  if x,(t) > 0 for all t > 0, then we will assume that T, = + m. However, in the following, 
we will show that all paths +,(t) intersect plane x = 0 for increasing time from t = 0, and thus T, turns out 
to be a proper number. 

Lemma 6.1 

If conditions (6.11)-(6.13) me fulfilled, then for increasing t ime from t = 0, all paths &(t) intersect 
first plane x = E and then plane - x = 0. 
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For the proof of the lemma we will show that until the intersection with plane x = E, on any trajectory 
&(t) there is fulfilled the inequality 

z,(t) - xo(t) > 0.8ck. (6.14) 

By virtue of lemma 3.9 it is sufficient to  establish inequality (6.14) only for trajectory +o(t). Suppose that 
inequality (6.14) is violated on path q50(t)until i t s  intersection with plane x = E. ,Then, as long as 

~ ~ ( 0 )  = ck > 0.8ck,- ~ ~ ( 0 )  

from continuity we can assert  that there exists a t* > 0 for which 

zo(t*) - xo(t*) = 0.8ck, 

zo(t)- xo(t) > 0.8ck for 0 5 t < t*. 

Evaluate yo(t*) from the above. W e  will show that 

yo(t)< 0.8 for tA0, t*]. 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

Indeed, yo = 0 for t = 0; therefore, inequality (6.18) is fulfilled for t = 0. Suppose that there exists a &(O, t*) 
for which 

yo(i) = 0.6, (6.19) 

and that for td0,  t] there is fulfilled the inequality 

yo(t)5 0.6. (6.20) 

If i t  results that such a does not exist on interval (0, t*), due to the continuity of function yo(t), inequality 
(6.18) will be fulfilled for all  tc[O, t*]. 

Return to equality (3.7). From this equality and from the monotonicity of the increase of function yo(t) 
on the interval of time 0 5 t 5 t*, we see that for t&, t*], on path $o(t) there is fulfilled the inequality 

dy= 2-X ck 
dx y - - f ( ~ )  < 0.6-ccx-Hx ’ 

since xo(t)increases monotonically for tE[O, t*]; then xo(t)5 E for tr[O, t*]. Therefore, from the las t  inequality 
and from condition (6.7), 

3<2ck.dn 


Integrating this inequality along path q50(t) for t&, t*], we obtain, because of inequality xo(t*) 5 E, 

yo(t*) - yo(i) < 2ckr. (6.21) 
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-- 

But from inequality (6.7) and (6.2) or (6.3), i t  follows that 

(+ + c). <0,z. (6.22) 

Therefore, ckc < 0.1 s ince ck = max 11, c) by definition of k. Accordingly, from inequality (6.21) and equal­
ity (6.19) we obtain 

y,(t*) < 0.8. 

Since y,(t) is monotonically increasing for tdO, t*], the las t  inequality thus proves relation (6.18). 

From equation (3.5) and from condition (6.17), we see that on path 4,(t) for tc(0, t*) there is fulfilled 
the inequality 

dz
3’-

cx + ba ( x )  
0.8 

Because x,(t) increases for 0 5 t _< t* and xo(t)5 6, from the las t  inequality w e  obtain 

dz >- CE + bHE 
dY 0,8 

But in this chapter we consider only the case when b < 1; therefore, from the last  inequality and from 
condition (6.7) we obtain 

on path +,(t) for tc(0, t*). Integrating this inequality along +,(t) from t = 0 to t = t * ,  we obtain 

Thus, from relation (6.18) we see that zo(t*) - z,(O) > - 0.1. But by hypothesis, z, = ck; therefore, from 
the last inequality we have 

z,(t*) > 0.9ck. (6.23) 

From inequality (6.22) it is easy to conclude that inequality c _< 0.05. Therefore, following from x(t*) <. E and 
from (6.23), 

z,(t*) - x,(t*) > 0.8ck. (6.24) 

The last  inequality contradicts equality (6.16), and the contradiction obtained thus proves the lemma. 
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In this way, all paths &(t) intersect first plane x = E and then plane z - x = 0. Designate by t$) the 
first  instant of time aiter t = 0 of the intersection of +,(t) with plane x = E .  In going through the proof of the 
lemma, we have established that for all tE[O, tg)] there are fulfilled inequality (6.19) and inequality 

z,(t) > 0.9ck. (6.25) 

From the proof of lemma 3.3, i t  was shown that all  paths &(t) intersect plane z - x = 0 for t > 0. Let 
t g )  > 0 be the first instant after t = 0 of the intersection of path &(t) with plane z - x = 0. From lemma 6.1 
it  follows that 0 < t k )  < tg). 

As was shown for the proof of lemma 3.3, path $,(t) for t > t g )  and sufficiently close to t g )  l ies in 
domain (x > 0, y > 0, z - x < 0). Let The(@, T,) be a number such that path &(t) lies in domain {y 20, 
z 2 0)for tc[t$,?),T&]. Then the following lemma is true. 

Lemma 6.2 

Suppose that inequalities a > 0, b < 1, cz+ b > 0 and conditions (6.11)-(6.13) are fulfilled; then for 
tc[@, Th], path +,(t) lies in domain {x > E ,  y 2 0, z - x < 0, z ? 01. 

Proof 

Evaluate yl(t(,')) a s  above. On interval (0, t v ) ) ,  z,(t) is a decreasing function of time; therefore zl(t(,z))< 
ck, but zl(tv)) = xl(t?)) by definition of instant t?); consequently, 

x(t(,z))< ck. (6.26) 

In consequence of equation (3.7), for tc(0, t v ) )  on path +,(t) there is fulfilled the inequality 

(6.27) 

Now we will show that 

y,(tP)) < k + 2czk + 0.1. (6.28) 

Indeed, if for tc[O, tp)]  there is fulfilled the inequality 

y,(t) 5 k + czk + 0.1, (6.29) 

then inequality (6.28) follows immediately from inequality (6.29). Since y,(O) = k by definition of y,(t), then 
inequality (6.29) is fulfilled for t = 0. If this inequality is not fulfilled for all  tc[O, t',"], there exists a 
t'c(0, tiz)) such that 

111 



yl(t') = k + c2k + 0.1, 

and inequality (6.29) is fulfilled for 0 _< t 5 t'. 

(6.30) 

On segment [0, t?)], yl(t) increases with time; therefore, for tc(t', t?) it results that 

yl(t) > k + c2k + 0.1. (6.31) 

From conditions (6.11)-(6.13) and from inequality (6.7), it follows that for a(x) < 0.1, 0 5 x 5 ck. Because 
x,(tP))<ck and xl(t) increases on interval 0 _< t _< t?), on +,(t) for tc(0, t v ) )  i t  results that a(x) < 0.1. There­
fore, in consequence of (6.27) and (6.31), on path q5,(t) for tdt ' ,  t',')] there is fulfilled the inequality 

On +'(t) for tdO, t(lZ)], x < ck; thus the last  inequality produces 

Integrating this inequality along path q5'(t) on interval t' 5 t 5 ti2), we obtain 

y1 (ti") -y, (t')<CX, ' (d*) ) .  

Since xl(t',')) < ck, the las t  inequality together with, (6.30) gives (6.28). 

If inequality (6.28) is used again, yl(t(lZ))can be evaluated with considerably more precision. We will 
now find this more precise value of yl(tv)). Dividing equation (5.39) by the first equation of system (2.15), 

dw
_-- (1 -- b) 2--x 


dx Y - f W  49. (6.32) 


On path q51(t) for tQ0, ti"] we have 

dW-	 ( 1 - b ) c k  H xdx < k - c c - f i ~  , 

This results because x,(t) and yl(t) increase and zl(t) decreases with increasing time on the interval of time 
considered. Integrating the las t  inequality along path +,(t) from t = 0 to t = t?), we obtain 

(6.33) 

We will show that 

(1 - b)ckHr' < 0.01. (6.34) 
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For b 10,this inequality results because ck = max {c,11and because CE < 0.1, H r <  0.1 and E < 0.1, as in­
equalities (6.7) and (6.22) prove. Let b < 0; in this case, from (6.3) we obtain 

ckr(1 - b)Hr < ckr(H + c)r, 

Therefore, (6.34) follows from (6.7). From (6.33), (6.34) and (6.7), we obtain 

0 01w,(i?) -.wl (0) <2.0,9<’0.0056. (6.35) 

Dividing equation (5.39) by the second equation of system (2.15) we can write 

dW

dy = (1  -6)p (x). (6.36) 


However, xl(t) increases on the interval of time [ti‘’, t?’]; accordingly, from the definition of the instant of 
time t\l) and from (6.26), there follows inequality r _< xl(t) 5 ck for tr[tv), tv’]. As a consequence of condi­
tion (6.13), inequality a(x) < 6‘ is fulfilled on +l(t) for tr[t(,‘), t‘,“]. And thus from (6.36) there follows in­
equality 

dw 

dY 
-< (1 -b)  64, (6.37) 


which is true for path +,(t) for tc[t(,‘), tp’]. Integrating this inequality along path +l(t) from t = t(,‘) to t = 

t?’, we obtain 

W](tl”) <a,(til))+ (1 - 6)(yl (ti2)),.-y, (tl“))64. 

Since yl(tp)) > y,(O) = k, from here and from inequality (6.28) w e  find 

QJzer, cm<w1(P) . .  -6)(2c2R +‘o. 1) 6‘.+ (1 

Evaluating the second term on the right side of this equality, by hypothesis we have - b < c2;therefore, we 
can write 

E ‘ ( 1  - 6)(2c”+O0.1)<(~”cc”6~)(2c”R6~+O,16~). 

Following from this inequality, 

6’ (1 -6)( 2 ~ ~ 4+0.1)<(0.0025 +0.01) (0.02 +0.0005). 

Thus, we obtain 

w,( t r )<W ](A‘))+o.OoO3. 
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And from (6.35) we see that 

Wi (t?‘’)<WI(0)+0,006. 

From the definition of w in equality (5.38), we have 

p 1 yi2 (ti(2)) <y 1 k2(1  +c2)+0,006 

or 

y, (If2’) < R‘++)-+o:o E. 

Therefore, from lemma 3.9 there follows the correctness of the inequality 

We will now prove that inequality (6.40) is correct for tQO, TOIL 

xu( t )<+ v ~ ( i+ c?) +oioi2. 

(6.38) 

(6.39) 

(6.40) 

Indeed, proceeding from lemma 3.3, path &(t) intersects surface y - f(x) = 0 for t 1 tg) .  Let tp’ be the first 
instant after t$) of the intersection of path &(t) with surface y - f(x) = 0. (We assume that this is the first 
existence of an intersection, i.e., that from domain {y - f(x) > 01, path &(t) for t = tk’ goes into domain 
{y - f(x) < 01.) A s  was shown for the proof of lemma 3.3, yo(t) on time interval tc[O, tp’] exhibits only one 
maximum for t = tg’. Consequently, for t80, tp’], 

And therefore, from inequality (6.39) i t  follows that for tr[O, tg’] there takes place the inequality 

(6.41) 

Accordingly, for t = t$’ and for all  ac[O, 11, there is fulfilled inequality 

y , = f ( x , ) < l / E ~ ( l  +cq+0,012. 

But for x > 0, f(x) > cx; consequently, 

From this inequality and from lemma 3.9 i t  is easy to conclude the correctness of inequality (6.40) for all 
td0, TO]. 

Now we will go immediately to the proof of lemma 6.2. To prove it,  we will suppose to the contrary 
that the assertion of the lemma is not fulfilled. Then, since for t > t g )  and sufficiently close to tg ) ,  &(t) 

114 

.. . I 



lies in domain {x > E ,  y > 0, z - x < 0, z > 01, from the continuity there exists a t’&), T&] such that 
$,(t)E(x > E ,  y 20, z - x < 0, z 2 0) for tc(t$), t&), and there is realized a t  least  one of the equalities 

In the first place, suppose that the first of equalities (6.42) is fulfilled. Since xu($)) > E ,  as follows 
from lemma 6.1, then on interval t g )  5 t < t’, path &(t) intersects surface y - f(x) = 0 and goes into domain 
{y - f(x) < 0). Thus, i t  results that tg)c[tP), t‘). Since path &(t) lies in domain ( z  - x < 01 for tc(tg), t’), 
in consequence of the reasoning of section 3, instant t g )  is the unique instant of intersection of path &(t) 
with surface y - f(x) = 0 on interval [tg), t‘). Therefore, for t = t’, there must be fulfilled the inequality 

Because x,(t‘) = E ,  from the las t  inequality we obtain 

yo(t’) 5 C� + 6‘. (6.44) 

Moreover, from that definition of the instant of time t’, w e  have 

0 >/ 2, (t’)-xo(t‘)> -x, (f’)= - E. (6.45) 

Making use of inequalities (6.44) and (6.45), evaluate w,(t‘) from the above; since yo(t’) 1 0 ,  we then 
will have 

Thus, from inequalities (6.7) and (6.22) we see that 

wo(t’) < 0.03. (6.46) 

Following from (6.12) and (6.40), inequality a(x) < a4 is fulfilled for tdtp’, t’] on &(t). And arising from 
(6.36) inequality (6.37) is fulfilled for tc[tg), t’] on +,(t). Integrating this inequality along &(t) from t = t g )  
to t = t’, we obtain 

wo(t’)-wo(tP)> (1-6 )  6‘ (yo.(f‘)- y o  (602’)). 

Since yo(t‘) Z 0 from the definition of t’, i t  results that 

wo( f ’ )  -wo(t’)< ( 1-6 )6‘ ( k  +2c2k +0.1). 

And, as for the proof of inequality (6.38), we obtain 

70, (t?))-wo(t’)<0.0003. (6.47) 
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Owing to equality (5.391, wo(t) increases on interval LO, &'I; consequently 

1 
E',,(t!') >wq(0) z y. 

Thus, from inequality (6.47) we have 

wa(f)> -0,0003. (6.48) 

The last  inequality contradicts inequality (6.46). The contradiction obtained proves that the first equality 
of (6.42) cannot be realized. 

Suppose now that the second equality of (6.42) is realized. Following from the reasoning of section 3, 
path &(t) can intersect plane z - x = 0 for t = t' only for the conditions that y < f(x) and either relation (3.2) 
or (3.3) is fulfilled. l$!e rewrite relations (3.2) and (3.3) in the following way: 

-cx -ba ( x )  9 . 1y -cx -a(x) 

on path &(t) for t = t'. Since i t  must occur that y < f(x) for t = t' on +,(t), from the last  inequality it fol­
lows that 

y - cx - a(x) 5 - cx - ba(x). 

Thus we obtain 

y _< (1 - b)a(x). (6.49) 

But from the definition of the instant of time t', x,(t')Lr; moreover, as mentioned already, inequality (6.40) 
is fulfilled for tc[O, T,]; therefore from (6.12) we see that 

y,(t') _< (1 - b)6'. 

Thus, as above, we obtain 

y,(t') 5 0.0003. 

From this inequality and from the second equality in (6.42), we have 

' 1w,, (t')<y (0.0003)'. (6.50) 

On the other hand, in the case considered, inequality (6.48) is obviously true. Inequalities (6.48) and (6.50) 
are contradictory, and the contradictions obtained thus prove the lemma. 

Now we explain in more detail the character of the behavior of trajectories +Jt) for m [ O ,  11. For 
tr(0, tg'), path &,(t), as follows from the definition of the instant of time tg', lies in domain {x > 0, z ---x > 0, 
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y - f(x) > 0); for t = tg) ,  path &(t) intersects plane z - x = 0. For this, as results from lemma 6.1, x,(tg))>c. 
Further, path &(t) for t g )  2tg) intersects surface y - f(x) = 0 and goes into domain {x > 0, y - f(x) < 0, 
z - x < 0). For an additional increase in t,  &(t) cannot go to origin while remaining in domain { z  - x < 0, 
y > 0, z > 01 since, by lemma 6.2, inequality x > c is fulfilled in this domain on +,(t). Therefore, due to  
theorem 3.1, path &(t) for increasing time must leave domain { z  - x < 0, y > 0, z > 0). According to lemma 
6.2, path q5,(t) can leave this domain only through plane y t 0 or plane z = 0. 

Suppose first that i t  intersects plane z = 0 for t > tg’. Then, according to lemma 3.1, path &(t) inter­
sec t s  plane x = 0 for t = To.> tg).  On the path in this case,  wefind that y,(T,) < 0, z,(T,) < 0. Moreover, 
i t  is clear that path &(t) intersects plane z - x = 0 in this case only one time in interval [0, To] for t = t p ) ;  
i t  a lso intersects surface y - f(x) = 0 only one time for t = tg) (if (I real intersection means a crossing of the 
path from either domain {y- f(x) > 0) or [y - f(x) < 0) into the other). Plane y = 0 is intersected for tc(0, T,) 
by path &(t) a lso only one time, for t = t g )  > tp) .  Since &(t) intersects surface y - f(x) = 0 only one time 
for t = t g )  and since x,(tg’) 2xu(tg’) > E, then plane x = E is intersected by path r&(t) only two times, for 
t = t g )  and for t = tg)E(tg), T,). 

Consider now the second case. Let path &(t) leave domain {x > 0, z - x < 0, y > 0, z > O {  through 
plane y = 0. A s  before, let  t p )  be the first instant after t i )  of the intersection of &(t) with surface y ­
f(x) = 0, and let t g )  be the first instant after t p )  of the intersection of &(t) with plane y = 0. If path &(t) 
does not intersect plane z - x = 0 for additional increases of t from t g )  to T,, then, according to lemma 3.5 and 
the fact  that yJt) then decreases for t d t i ’ ,  T,], path &(t) intersects plane z = 0 for t t( tk),  T,] and further­
more, as follows from lemma 3.1, i t  intersects plane x = 0 for t = T,. For this, i t  results that z,(T,) < 0, 
yo(T,) < 0. In this case,  as in the preceding, path &(t) for tE(0, T,) intersects plane z - x = 0, surface 
y - f(x) = 0 and plane y = 0 only one time and plane x = E two times, for t = t i )  and for t = t$)E(tg), To). 

Consider now the last  possibility. Let path q5,(t) intersect plane z - x = 0 for t = t$)E(t$), T,). For 
this we will say that t$“ is the first instant after t = t i )  of the intersection of &(t) with plane z - x = 0. 

The following lemma is true. 

Lemma 6.3 

Let inequalities a > 0, b < 1, cz+ b > 0 and conditions (6.11)-(6.13) be fulfilled; then inequality 
yo(t) < 0 is fulfilled for tE[t$), T,]. 

Proof 

Suppose first that xo(tg’) 1 E. It is easy to see that on interval tg’ _< t _< tk) ,  path r$,(t) intersects 
surface y = f(x) only one time for t = tp) ;  consequently, function xo(t) on interval [ tg),  tg)]  has only one 
maximum, at  point tg) .  Since x,(tg)) > E and x,(tg’) 2E, then it results that x,(t) L E for tc[tg), tg)]. More­
over, inequality (6.40) is obviously true for t d t g ) ,  tg)]. In consequence of condition (6.12), on &(t) for 
tc[tg’, tg’] there is fulfilled inequality 

a(x) < 64. (6.51) 
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We evaluate zo(tg’) below. Since by hypothesis we have zo(t) - xo(t) < 0 for tc(tg’, tg)) ,  then on path 
&(t) for tc(tg), tg))  it is true that 

or 


Because inequalities x 2 c and (6.51) are satisfied on &(t) for tE(tp’, tg’), from the last  inequality we con­
clude that 

> c +bs3. 
dY 

However, from the hypothesis of the lemma, b > - cz;therefore, we can write 

dz-dY >C ( 1  -c83). 

Therefore, from (6.7) we obtain the following inequality true on path &(t) for t d tg ) ,  tg)]: 

dz;i3>or9 c. 

Integrating this inequality along path +Jt) from t g )  to tk ) ,  we obtain 

2, (tjp’)- 2,(t:’) <0-9 c (y, (t:’) -y, (e))). 
By definition yo($’) = 0; therefore, from the last  inequality we come to 

Z,( tY))  - z , ( p )  <-0.9 cy, (t?)). (6.52) 

However, according to equality (5.39), function wa(t) increases for. tc[O, tp)]; therefore we can write 

Since z,(O) = ck, we obtain 

y,  (el)> ck. (6.53) 

And from (6.52) we come to 

z, (ty’)-z, (tr’)< -0.9 c2k. 
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But for tA0, To], function z,(t) is a decreasing function of time; consequently, 

z,(t!’) <ck -0.9 c% =ck (1 -0.9c). (6.54) 

Now evaluate wo(tg’). On the interval of time t g )  5 t _< t g )  on +,(t), inequality (6.51) is true and with it 
(6.371, also. By integrating this inequality along +,(t) on interval t g )  _< t 5 t$“, we obtain 

w,(t?’)-w,(t:)) > (1 - b) 84 (y, (if)) - y, (tf’)). 

Since w,(t) decreases with increasing time for tc[tk’, $’I, then lyg(&))l < y,,(t$)). Thus from (6.39) we 
have 

Because k’(1 + c’) > 1 and w,(tP’) > w,(O) > Lc‘k’, from the last  inequality we obtain
2 

wa(t, 1(6)) > ~~~k”33te’(1+~~)(1-6)6~. 

Therefore, making use of inequality (6.7), i t  is easy to obtain the estimate 

1w,(t?’) > 3 C * P  (1 -0,06 52). (6.55) 

Suppose now, contrary to the assertion of the lemma, that there exists a Td(t$), T,] such that y,(~,)=0 
and for tc[t$’, 7,) 

Then, according to the reasoning of section 3, z,(t) - x,(t) > 0 for tc(tg), T,). Thus, from (5.39) i t  follows 
that 

Jo (Tu)> ‘Ua(t$). (6.57) 

Since z,(t) decreases for td0,  To] 

% (To) < 2, (t!’). (6.58) 

From inequalities (6.55)and (6.57) we see that 

(6.59) 

On the other hand, since y,(r,) = 0, then from (6.58) we find 
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and thus from.(6.54) we obtain 

1
W,(T~),<y Czk2(1 -6.9~)’. (6.60) 

W e  will show that inequalities (6.59) and (6.60) are contradictory. To do this we will attempt to  prove that 

(1 - 0 . 9 ~ ) ’< 1 - 0.068’. (6.61) 

We will show -this. From the conditions of the case, z,(t$)) > 0; therefore, 1 - 0 . 9 ~> 0 because of (6.54). 
Accordingly, from inequality (6.7), (6.61) also follows. Thus, inequalities (6.59) and (6.60) are contradic­
tory. This contradiction proves the lemma in the case x,(t$)) 2 E. 

Supposenow that xo(t$’) < E .  Since x,(tg)) > E ,  there exists in this case a unique t$)E(tg), tg’) for 
which xu(&)) = E .  For this i t  is obvious that there is fulfilled the inequality 

Then as in the preceding case,  i t  is easy to ascertain that on,the interval of time t g )  5 t 5 t$) there is ful­
filled inequality (6.51) ‘and, with it,  (6.37) also. Integrating this inequality, we obtain inequality (6.55). 
From this inequality and from (6.7) there follows the relation 

w, ( f ’ )  >f c2ka-0.0003. (6.63) 

By hypothesis, path &(t) intersects plane z - x = 0 for t = t$)c(t$), Tu); consequently, z,(t$)) > 0. There­
fore, from (6.62), from the definition of t$) and from (6.63), we have 

y: (t:’))+ k z  >c?ka-O.CO06. 

Thus it follows that 

y, (t?) < -0.7. (6.64) 

Since ya(t) decreases with increasing time for tE[t$), $)I, from the last  inequality we obtain 

y,(tF) < -0.7. (6.65) 

Suppose to the contrary of the lemma’s assertion that there exists a TgE(tg), T,] such that yo(.,) = 0, 
and inequality (6.56) is fulfilled for tc(t$), T,). Then it  results that z,(t) - xo(t) > 0 for tE(tg), 7,). Thus in­
equality (6.57) follows. It is not difficult to see that 

0 < 2. (TJ < z, ( t 9< E .  

Consequently we obtain 

1 
W , ( ~ , )< ;z 9. (6.66) 
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From inequality (6.57) and from (6.55) it follows that 

(6.67) 

This inequality contradicts inequality (6.66), and the contradiction obtained proves lemma 6.3. 

* According to  lemma 6.3 any path &(t) intersects plane x = 0 for t = T,, where T, is a finite number. 
Indeed, if  instant t$’ is not defined on &(t) (i.e., if r&(t) does not intersect plane z - x = 0 for tc(tg’, To)), 
then it was proved above that &(t) intersects plane x = 0 for t = Tu, and for this it results that yd(To) < 0. 
But if  instant tg) is defined, then path +,(t) lies in domain ix > 0, y < 0, z - x > 01 for t&), T,). How­
ever, path &(t) cannot remain in this domain for all t > tg’ since by theorem 3.1 i t  would then have to go to 
origin, but this is impossible for function wJt) always -increases with time in domain {x > 0, z - x > 0). 
Consequently, path &(t) goes into domain {x > 0, y < 0, z - x > 01. This path cannot intersect plane y = 0; 
therefore, i t  also cannot intersect plane z - x = 0 for tc[t$), T,], since for y < 0 and x 20, as seen from the 
reasoning of section 3, all paths of system (2.15) intersect plane z - x = 0, crossing from domain {z- x,< 01 
into domain { z  - x > 01,and not the reverse way. Consequently, path &(t) intersects plane x = 0 for a 
finite Tu, and for this accord,ing to lemma 6.3 it  results that y,(T,) < 0. 

Thus, path &(t) behaves in the following way. For increasing time from t = 0 to t = tg), &(t) lies in 
domain {x > 0, y - f(x) > 0, z - x > 01. For t = t g ) ,  path &(t) intersects plane z - x = 0 and crosses into 
domain {x > 0, z - x < 0). Finally, for t = t k )  2 tg’, path &(t) intersects surface y - f(x) = 0 and goes into 
domain {x > 0, y - f(x) < 0,z - x < 0). For a further increase of time, path &(t) intersects plane y = 0 for 
t = t g ) .  Further, one of two things is possible: either &(t) intersects plane z - x = 0 for t = t$’ and then 
plane x = 0 for t = Tu > t g ) ,  or &(t) does not intersect plane z - x = 0, and does intersect plane x = 0 for 
t = T, > tg).  For this, y,(T,) < 0 in both cases. Since function x,(t) shows only one maximum on the inter­
val of time 0 _< t < T,, path &(t) intersects the plane x = 6 only two times on interval 0 < t < T, for t = t g )  
and for t = t g )  > tk’. 

In the following discourses we will, as before, suppose that inequalities a > 0, b < 1, cz+ b > 0 and 
conditions (6.11)-( 6.13) are fulfilled. 

W e  will consider the function 

u = c2x - cy + 2. (6.68) 

Obviously, i ts  time derivative is equal to 

= - cu - (c’ + b)a(x). (6.69) 

Below, we estimate the quantity u,(t$)). From equality (6.69) for u _< 0, we obtain 

du-dt  > - (c3 + b)h (x ) .  (6.70) 
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Dividing this inequality by the equation of (2.15), for td0,  tg’] and u 5 0 on path &(t), we will have 

(6.71) 

But for u 5 0, y 2 cx + 1 z .  Therefore, inequality (6.71) gives
C 

on path &(t) for td0, tk’] and for u _< 0. However, estimate (6.25) occurs on the interval of time 0 5 t 5 tk) ;  
therefore, from the last  inequality and from inequality (6.7) we have 

dU ( ~ 24- b )  HX 
dx->- 0.8 * 

From the definition of point po, uo(0) 20; having noted this, we integrate the last  inequality along path 
+Jt) on interval [0, t$’] and obtain 

Since u,(O) 2 0, then 

Dividing inequality (6.70) by the third equation of system (4.7) we find that 

du (c9 + b )  a ( x )
dz cx+  b a ( x J  

for u _< 0. For tc[t$’, tk)] we have inequalities xo(t) 2 and (6.40). Thus, becaude of (6.13), 

d u  (c2+ b)64-
dz <cx +h ( x )  ’ 

By supposition, c2  + b > 0; therefore, from the last  inequality we have 

du (cp + b)&*
dz< cx - c k  ( x )  

Since the inequalities x 6 and a(x)< a4takes place on &(t) for tc[t$’, &’I, w e  can write 

(6.72) 

(6.73) 

(6.74) 
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On interval t$) 5 t 5 t g ) ,  za(t) decreases with increasing time; accordingly, by integrating inequality (6.74) 
along &(t) on interval [tg’, tg)], we obtain 

b 
e+, 

Ita (t?) - IC, (tt’))> -383 (2,( t 3-Z, (tS’)). (6.75) 

Since z,(t) decreases for tc[O, To], 

2, (tf’j <Z a  (0)=ck. (6.76) 

We will show that 

Indeed, if path &(t) intersects plane z - x = 0 for t = t$’c(tp’, T,], then as proved above, z,(tg)) > 0 and 

inequality (6.77) is obvious. But i f  path &(t) does not intersect plane z - x = 0 for tc[tg’, To], then as 

proved earlier, z,(t) - x,(t) 5 0 for t g )  5 t _< To. Thus according to (5.39), w,(t) decreases with increasing / 121 

time for tc[t$’, T,]; however, from inequality (6.39) and from the definition of function w, i t  follows that 


(is)) <w,(tbZ))< k2 (1 + c2))-+0.006.w,, 


But for z,(tg’) < 0 we have z;(tg’) < 2w,(t$)). Therefore, from the preceding inequality we have 
(6.77). And from inequalities (6.75)-(6.77) we obtain 

Thus, it is easy to verify the inequality 

b 
C + C  

u, (tL5’) -u,,(ti’))> -___ ?j3(2ck+k) .  (6.78)1 - ~ 8 3  

Since b < 1 by hypothesis, from this inequality and from inequality (6.22) it is easy to see the following in­
equality: 

u0(tf‘))-u,,(t!))> -0.0035~. (6.79) 

From inequality (6.72) because of (6.7) we have 

u, (tt’))>-0.0063~. 

And thus from (6.79) we conclude 

u, (fS’) > -0.01c. (6.80) 
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W e  will show that 

wa(ff’) > k2 (u2 +c2)70.0002~~. (6.81) 

Suppose first that path +o(t) intersects plane z - x = 0 for t = t$)E(t$), To]. Moreover, suppose that t g )  5 
t$). Then, as was proved earlier, zo(t) - xo(t) > 0 on the interval t$) 5 t 5 t$); consequently, wo(t$)) < 
wo(t$’). Therefore, for the proof of inequality (6.81) we need to establish the inequality 

w,(tp,> 1 Ra (a’ + c2) -0.0002c2. (6.82) 

On the interval [tg’, tg)], w,(t) decreases; consequently, 

y, (tp)> - I /k2  ( 1 +c y  + 0.018. (6.83) 

Furthermore, on interval t g )  5 t _< tg’, because t$) 2 t g ) ,  on path +o(t) inequality (6.37) is fulfilled. h t e ­
grating this we obtain 

w, -w,(if’) >(1 - b )  5 4  (y, (q’)-y ,  (ti”)). 

Therefore, from (6.39) and (6.83) we obtain 

wa(tb6,) -W , ( t f ) ) >  -2(1 -b)8‘1/k2(1 +cy+o.o12. 

And thus we come to 

w,( t ; ~ )- (ti?))=z -2 ( 1 -b )  tt (1,+C )  8 4 .  (6.84) 

From this inequality with the help of inequality (6.7), i t  is not hard to obtain 

wa( i i 6 J )  -w,( t i 2 ’ )  >0.0002cz. 

However, wo(t) increases for td0,  tg’]; therefore, 

(2) 1 wa ( t o  ).>ma (0) = - k 3  (a’ +c’),2 

Thus, we also obtain (6.82) and with i t  (6.81) besides. 

When &(t) for tc[tg), tg’] does not intersect plane z - .x= 0, the proof of inequality (6.81) proceeds 
analogously except that instant tk’ should be considered instead of instant tg) .  

W e  introduce the following designations. First assume that 

(6.85) 
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W e  designate 

(6.86) 

(6.87) 

Then inequa1,ity (6.80) takes on the following form: 

- csy, + 62, > - c 4  - 0.01c. (6.88) 

But inequality (6.81) is then rewritten in the form 

(- cv + 62, - 6)’ + (- 7+ 6yU)‘- (1 + c’)v’ > - 0 . 0 0 0 4 ~ ~ .  

From this inequality we obtain 

(6.89) 

dY 
dx Y - f ( 4  

1. Sy, L 0, a z u 5  0. 

In this case, from (6.88) we obtain 

sy, < C� + 0.01 < 0.11, (6.90) 

2 - xEvaluate -= -I___ on path &(t) for tc[t$), Tu]. The following four cases are possible. 

az, > - czc  - 0.01c + cay,. (6.91) 

Consequently, on path $,,(t) for tc[tg), Tu] there is fulfilled the inequality 

t t ~- - C X - h ( x )  - c x - b a ( x )  - -cx - ba ( x )  
z- Y - j  (4 4 -q +  By, - - f ( x )  - q + o o . l l  * 

From equality (6.85) i t  is easy to verify the relation 1 -> 0.7; therefore,/%2 

dz-<2 (Cx +ba ( x ) )  <2 (cx + H x ) ,
dx 

since a ( x )  _< Hx and b < 1 for 0 5 x 5 e .  Integrating the last inequality along path &(t) from t g )  to Tu,we 
obtain 

2, (Tu)-2, (tL5)) > - (CE’J +HE*) 
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or 

za( To) > - 0.16 - c~ + az,. 

Therefore, from (6.91) we obtain for path &(t) on the interval of time [tg), To], 

Accordingly, 

Z - X  0 , l o  + C’E -+ 0.01c + E< c +
Y--f(X) I-.8Yu 

Since 7 1 0.7, from (6.7) and (6.90) we obtain 

on path &(t) for tc[t$), To]. 

2. Sy,L 0, Sz,L 0. 

In this case,  on path q$,(t) for tdtg’, T,], the following inequality is obviously fulfilled: 

dz -cx -ba (x)‘z< -1 f - ay, - f ( X )  ~ - <2 (cx +H x ) .  

Consequently, 

z,(T,) > - c7 - CE* - He2 + Sz,. 

Accordingly, in this case on path &(t) for tc[t$), T,], thereis fulfilled the inequality 

2 - X  < - cq - E - EZ(C + H ) ,  
Y - f W  -1 

or 


2 - X  0.1 I 
Y--f(X) < C + C T .  

Thus, following from 7 > 0.7, inequality (6.93) is also fulfilled in case 2. 

(6.92) 

(6.93) 
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3. 6y, 20, 82, L 0. 

As was proved above, y < f(x) on path &(t) for t = tg) ,  but x&’) = E by definition of the instant of time 
tg) ;  therefore, 

y,(tg)) < CE + HE< 0.1. 

Thus, from (6.90) there results inequality 

6y, < 7 + 0.1. 

Since > 0.7, from the last  inequality it follows that 

And consequently 276y, > Sy;. Proceeding from this inequality and from inequality (6.89), 

6y; - 2(c7 + E)&, + 2 ~ 7 7 ~  > 0.+ c2 + 0 . 0 0 0 4 ~ ~  

In consequence of this quadratic inequality for 6z,, there is fulfilled one of two inequalities: 

62,>cy + E +1/c*y2-0,00o4c~ (6.94) 

or 

52, <cy + E - 1/C?y2 -0,0004c~. (6.95) 

Go first to the case when inequality (6.94) is fulfilled. From (6.94), because 7 > 0.7, we obtain 

62, > c~ + E + 0 . 9 9 6 ~ 7> 1.996~7.  

Thus, from the definition of 62, it follows that 

z,(t$)) > 0.996~7.  (6.96) 

But from equality (6.85) we have 

kc

I >  /-* 

1 +cz (6.97) 

Therefore, i t  is not difficult t o  verify the following inequality: 

0 .996~7> E. (6.98) 
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We will show that 

kca0.9 {E2 (6.99) 

ca . 1For c 21, inequality (6.99) results because k = max {1, -3= 1 and because 
/iTF >-. For c < 1, in­

2 
equality (6.99) follows since k = max * and since I/.?(1 +$)< 0.2 by virtue of (6.7) and (6.22). 

From inequality (6.99) we obtain inequality (6.98). The following inequality results from inequalities (6.96) 
and (6.98): 

z&)) - E > 0. 

But from the definition of t g )  w e  have x,(t$)) = E; consequently, 

z&') - xo(tb"') > 0. (6.100) 

A s  proven earlier; this inequality is possible only when for tE[t$), T,] there are fulfilled the inequalities 

From these inequalities we see that on &(t) for tE[t$), To] there is fulfilled the inequality 

(6.102) 

Now consider the case when inequality (6.95) is fulfilled. From this inequality by virtue of 7 > 0.7 
there follows inequality 

6z, < c7 + E - c7  + 0.0004~ (6.103) 

or 

6ya < 0.1004~. (6.104) 

From inequality (6.88) we obtain 

cay, < az, + c4 + 0.01c. (6.105) 

Arising from (6.104) we have 

6y, < 0.211. (6.106) 

dzAccordingly, on q5,(t) for tE[tg', T,], there occurs the inequality -= -CX- b a ( x )~. cx+Hx 
dx Y - - f ( X l  < q - o , z i i  ;. 
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since 9 > 0.7, then 

dz cx+ Hx 
dx 0.4b9 

Integrating the last  inequality along path &(t) from t = t p )  to t = Tu, we obtain 

Proceeding from this inequality, on path q5,(t) for te[t$), To]the following inequality is fulfilled: 

z -x cy - t z ,  + E +0.116 

.Y-f (4< i-&Yo 

Thus, from (6.105) there results the inequality 

3%1- _- CE -0.01 +c o +  0.01 +1+.0.11 I 
Z - X  E C C 

Y - f W  < c  % -cs  -0.011 - 7  

Accordingly, from (6.7) and (6.22) we obtain 

2 - X  

Y - f ( x )  <c + -cza 
0,121 

C. 

-c-cs -0*01 

And thus, because of (6.105) w e  conclude that on path &(t) for tc[t$’, To] the following inequality is true: 

2 - X  0 121 
Y -f W  <C +o+8q c <1.25~. 

Consequently, inequality (6.93) is also fulfilled in the case considered. 

4. 6 y u  5 0,62, L 0. 

This case we will not consider. 

Thus, inequality (6.93) is true in cases 1, 2, and 3. In consequence of this inequality, equality (6.32) 
and the conditions of (6.11) and (6.12), it follows that inequality 

dw <1.38 (1 - b)  CHX, (6.107) 
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is true for path &(t) for tdt$), To]. Integrating this inequality along &(t) on this interval, we obtain 

w,(T,) - wo(t$’) > - 0.69(1 - b)Hc2. (6.108) 

Turn to  inequality (6.84). This inequality because of condition (6.7) can be put in the form 

But w,(t) increases with increasing time for t d tg ) ,  To]; therefore, if t g )  L tg), from (6.109) we obtain 

w,(t$)) > w,(t$)) - 0.4(1 - b)a3. (6.110) 

However, if t$) < t p )  or if t p )  is not defined on +,(t), inequality (6.110) is obtained in the same way a s  in­
equality (6.84), except that instant t$) ought to be considered instead of @). Since wo(t$)) > w,(O) = 

z(l  + cz)qz,from inequality (6.110) (because cH > 1) we obtain 

w,(t$)) > ?j(1 + cz)q2- 0.02(1 - b)cHSZ. 

From the last  inequality and inequality (6.108) we have 

wJT,) > -
2
1(1 + c2)qz- 0.71(1 - b)cHc2. (6.111) 

From inequality (6.78), with the assistance of (6.7), (6.22) and (6.2) or (6.3), it is easy to obtain the in­
equa1ity 

Uo(t$’) - Uo(t2’) > - 0.3H(c2+ b)c2. (6.112) 

And from this inequality and from (6.72), 

u,(t$)) > - 0.7H(c2+ b)2. (6.113) 

Because of inequality (6.70), on +,(t) for tc[t$), T,] and for u _< 0 there is fulfilled the inequality 

du c2 + 6-< 
Y -f (-0f f x .  

dx 

However, inequality (6.106) takes place in cases  1, 2, and 3. Therefore, from the last  inequality we 
obtain 

du-<--- (c2 -+ b )  Hx (cz + b )  Hx 
dx q -0,211 < - 0,489 * 

Integrating this inequality along path &(t) from t = t$) to t = To, we have 

u s  (To)-u, (ti5))> - 1.1 (CZ + b) &w. 
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And thus from (6.113) we can write 

u,(T,) > - 1.8(c2+ b)H2. (6.114) 

Note a t  this time that inequalities (6.111)and (6.114) are obtained only when the conditions of either 
case 1, 2, or 3 are fulfilled. 

Lemma 6.4 

Let inequalities a > 0, b < 1, cz+ b > 0 and conditions (6.11)-(6.13) be’fulfilled; then the following in- . 
equality is fulfilled for any m [ O ,  11: 

Proof 

This lemma is proved by contradiction; namely, we suppose that 

If supposition (6.116) is fulfilled, then the condition of case 4 could not be fulfilled by the preceding rea­
soning. Indeed, if  we assume that the condition of case 4 is fulfilled, by the definitions of 6y, and 6z,, we 
will have 

Y&) = - 7) + 6y, 5 - 7, (6.117) 

z,(t$)) = - cq + azo 5 - cq. (6.118) 

But yJt) and z,(t) decrease in this case for t d tg ) ,  T,]; consequently, 

Ya(T,) < - q and z,(T,) < - cq. (6.119) 

However, 

The las t  inequality contradicts supposition (6.116). This contrad,iction thus proves that the conditions of 
either case  1, 2, or 3 are fulfilled. And then inequalities (6.93), (6.106), (6.111) and (6.114) are also ful­
filled. 

Introduce the following notations: 

(6.120) 
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Inequalities (6.111) and (6.114) then take on the following forms: 

- 29AyO - ~CVAZU+ Ay; + Az& > - 1.42(1 - b)Hc2. (6.121 ) 

- CAYU + AZO > - 1.8(cZ+ b)HcZ. (6.122) 

2--X
dYInequalities (6.121) and (6.122) permit evaluating the quantity 	-= 

Y - f W  
on path &(t) for te[tg), Tu]

dx 
more precisely than it was done above by inequality (6.93). 

Since inequalities (6.121) and (6.122).are both obtained by the use  of inequality (6.93), this represents 
2 - 2 ­a more precise estimate of the function 

Y -f (4than the estimate by the foIlowing approximation. 

As for the establishment of inequality (6.93), the following cases can arise. 

1. Ayu L 0, Azu IO. 

Inequality (6.93) is true on path &(t) for tc[t$), To]. Integrating this along path &(t) on this interval, we 
obtain 

yo(t) < yo(To) + 1.38cxg(t). (6.123) 

Due to inequality (6.122) and the conditions of this case, we obtain the inequality 

(6.1 24) 

AZO > cAyU- 1.8(c2+ b)Hc2. (6.125) 

From relation (6.120) and inequalities (6.123) and (6.125), we obtain 

9- 2 - x  -C I  + CAY, -1.8 (c' + b)ifc? -	x 
~ 

dX - y - f ( x )  - q + L\z-$1.3s c x  -E X  

or 

The last  inequality can be .rewritten in the following way: 

(6.126) 
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2 - X  

Since b < 1 by hypothesis from inequality (6.124) and condition (6.7) we obtain 

hyu < 0.018. 

From inequality (6.126), because of the preceding inequality, and from 71 > 0.7, there follows the relation 

or 

dvzi =y --f(X) 
0,6cx+y.y+3 (6.127) 

This inequality is true for t d tg ) ,  Tu]on path &(t); integrating this we obtain the inequality 

(6.128) 

which is true on +u(t) for t&), Tu]. 

Due to the conditions of case 1, relation (6.120) and inequalities (6.124), (6.125) and (6.128), we ob­
tain 

(6.129) 

on path &(t) for t d tg ) ,  Tu]. 

2. AyO 5 0, Azu L 0. 

Integrating inequality (6.93), we obtain (6.123) and from this, as in the preceding case, the following in­
equality: 

Accordingly, it is easy to obtain the inequality 

* < c + c  id X  
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From this inequality, by integration we arrive at the relation 

yo(t) < yo(To) + cxo(t) + 0.3c2x&(t)+ 0.8x&(t) 

for tdtk) ,  To] and thus, as in the preceding case, we obtain 

(6.130) 

on path &(t) for te[tk), To]. 

3. Ayo Z 0, AZ, 20. 

As proved above, yo(T,) < 0; consequently, by, = T].Thus, from (6.121) there follows the inequality 

> -Az& - ~ C V A Z ~1.42(1 - b)Hce2. 

From this inequality one of the two following cases is fulfilled: 

Azo>CY +vc2q21.42 (1 -b)~ / C E ~ =-

Consider first the case  when inequality (6.131) is fulfilled. .Rewrite this inequality in the form 

Az,>cy +c 1 / q 2  -1.42 (1 - b)! ’ E ~. 

From inequalities cz+ b > 0, (6.7) and (6.22) we obtain 

Thus, from (6.133) i t  is easy to see the inequality 

A z u > c y + c ( q - l l . l ~ ( l  --)e2).H 


Since q > 0.7, from this inequality we have 

1 - 1.6‘ HT ( l  - & ) E ~ ) .  

(6.131) 

(6.132) 

(6.133) 
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Accordingly, because of (6.7) and (6.22) we obtain 

LIZ,> 1.98Cq. 

From this inequality and relation (6.120) we see that 

zu(Tu) > 0 .98~7 .  

However, zu(t) 2 zu(Tu) and xu(t) 5 6 for t&’, Tu]. Therefore, on the interval of time t g )  5 t 5 T,, there 
takes place the inequality 

zu(t) - xu(t) > 0.98~7- E. 

From (6.7) and the definition of 7,1, 

for tE[t$), To]. As proven earlier, this is possible only when ya(t) < 0 for tdt$), Tu]; however, 

(6.134) 

on &(t) for tc[tg’, Tu]. Because of this inequality, inequality (6.129) is also fulfilled when inequality 
(6.131) is fulfilled. 

Return now to the case when inequality (6.132) is fulfilled. From this inequality we easily obtain 

Az; - 2c7AzUI 0. 

From this and (6.121) we have 

Ay; - 2qAyo > - 1.42(1 - b)Hc2. (6.135) 

Because of this inequality one of two conditions must be fulfilled: 

by, >q +1/q2-1.42 (1 -6 )TCE~ (6.136) 

or 

Ay, <q- l / q z-1.42 (1 -b)Hcez. (6.137) 

Evaluate the quantity (1- b)HccZ. If b 20, from (6.7) we obtain 

(1 - b)Hc2 < 0.01. (6.138) 
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But if b < 0, from (6.3) H < - 5 and then (1 - b)H < H + c; thus (6.138) follows from (6.7). From inequalitiesb 
(6.136) and (6.138) i t  is not difficult to verify the inequality 

Ay, > 7 + 7 - 0.0142. 

Since ya(Tu) = Ay, - 7, we then have 

ya(Tu) > 7 - 0.0142. 

Because 77 > 0.7, from the las t  inequality i t  follows that ya(Tu) > 0, and this, as mentioned above, is not 
true. Therefore, inequality (6.136) cannot be realized; consequently, inequality (6.137) is fulfilled. From 
inequality (6.137) with the aid of (6.138), i t  is not difficult to obtain the inequality 

Ay, < 1.1(1 - b)HceZ. (6.139) 

Inequality (6.93) is fulfilled on path &(t) for te[tg), Tal. Integrating this along &(t) on interval t g )  L t L 
Tu, we obtain inequality (6.123). Moreover, inequalty (6.125) is true in this case as in case 1. From in­
equalities (6.123) and (6.125) we obtain 

Following from inequalities (6.138) and (6.139) we have 

by, < 0.011. 

Thus, in this case inequalities (6.127) and(6.128) are true. As in case 1,  from inequalities (6.128) and 
(6.139), we obtain the following inequality which is true on path &(t) for te[t$), Tal: 

(6.140) 

From cases 1, 2, and 3 and relations (6.4) and (6.5), the inequality 

(6.141) 

is fulfilled in these cases on path +,(t) for tc[t$), Tu]. 
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4. Ayo i0, Azu i0. 

W e  will show that one of these inequalities is strictly fulfilled; if not, we would arrive a t  the conditions of 
one of the preceding cases. This case cannot be realized. Indeed, if the conditions of the present case were 
fulfilled, we would have 

1 '  1 
wa(Tal +yY?(T,) + 1 

2: (Tal >7 j  ?"1 + c3)=w,<O), 

which contradicts supposition (6.116). Thus, i f  supposition (6.116) is fulfilled, inequality (6.141) is a l so  
fulfilled. 

Z - xNow evaluate the quantity dy-
x - - f ( x )  on the interval of time 0 5 t 5 t g )  for the paths q&(t) fordX 

which 0.5 _< u 5 1. Go first to  path +,(t) and evaluate y,(t) on interval [O, t?)]. From equality (3.7) we see 
that 

Since zJt) decreases and yo(t) increases with increasing time for td0,  from the last  inequality w e  ob­
tain the following estimate which is true on +'(t) for td0,  ti')]: 

9 ck I_ cn + Hx 
dx <k -cx- Hx - c + c  --__­

k-CX- HX * 

However, xl(t) 5 6 on interval of time 0 _< t _< t?); therefore, from the last  inequality, because of (6.7) we 
obtain 

d x  <c + 1.2 c (cx +Hx).  

Integrating this inequality on the interval of time 0 _< t 5 tv) ,  we have 

y < k + cx + 0.6c(c + H)xZ. (6.142) 

This inequality is proved for path $'(t); however, according to lemma 3.9, i t  will a lso be true for all paths 
&(t) on the interval of time 0 5 t 5 tg) .  

Now evaluate zo.5(t)for tr[O, t',ti]. Since y,.,(t) increases along with time on this interval, for +0.5(t) 
and td0, ti.$], we will have 

_- - C X - b a ( ~ )  cx +bHx cx +bHxdZ 

d x - Y -fW-- >- 0 . 5 - ~ � - H E  >- 0.4 a 


Integrating this inequality, we obtain 

z > ck - 1.25(c + bH)x'. (6.143) 

137 



The last inequality is proved only for path q50.s(t);however, because of lemma 3.9 it  is true for all paths 
&(t) for which 0.5 5 c 5 1for tA0, $'I. 

We will consider the functions yJt), z,(t) and w,(t) on path &(t) for td0,  tg'] and tt[tg), T,] as func­
tions of the x component. In this case,  multiple values arise since path &(t) passes  through strip 0 5 x _< E 

twice for interval [0, T,]. In order to avoid this muItiple value, we will index our function with the sign + 
on the interval of time [0, $1 and with the sign - on the interval To]. Because of equality (6.32) and 
inequality (6.141) we have 

(6.144) 

on all paths +,(t). On the other hand, from equality (6.32) and inequalities (6.142) and (6.143) we obtain 

(6.145) 

The last  inequality is true for those paths &(t) for which 0.5 5 o _< 1. Subtracting inequality (6.144) from 
inequality (6.145), we obtain 

dm+ d-*l ck-xX1,25(c+ bW)x2 
~ ~-dx - 2 > ( l - - b ) [  k f9.6 c (c + If)YZ -a ( x )iix 

(6.146) 

In the las t  inequality we will combine the fraction in the brackets and designate i t s  numerator by A and 
i t s  denominator by B. Then we can write 

A = c ( R  +q) (~(x)-x)'- ckPE2- 1.8 k (c' f b)  HE^ 
- 1.25 7 (C +bH) x2-00,6c'7 ( C  +H )  X' -1.25 ( C  + bN)X~ "(2)

+p 2 x+ 1.8 (c2+6 )  HE'a ( x )- 0,6c(c  + H )  x3  
(6.147)+1,25(c+ ~ H ) ~ E ~ X ~ - O . ~ . ~ , ~ ( C ~ + ~ ) ( C + H ) C H E ~ X ~  

and 

B = [k + O . ~ C ( C+ H)x2- a(x)][q + a(x) - p2]. 

Estimate A for xc[O, SI. Using (6.7), from (6.147) we easily obtain 

A >c (k+q)[( a  ( x )  -X )  -p2-1.8 

Due to this inequality and inequalities (6.2), (6.3) and (6.8), we have 
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Thus, from inequality (6.9) we come to 

A >0,9c (k+q)(h-+) (x - 0128). (6.150) 

From equality (6.148) and inequalities (6.7) and (6.11) it is easy to verify the following estimate: 

B < 1.15kv. 

Therefore, from (6.150) we obtain 

(6.151) 

Designate by h,w, the increasing function wo(t) for a passage of path &(t) in strip 0.26 _< x 5 6. Integrating 
(6.151), after simplifying the expression w e  obtain 

(6.152) 

This inequality was discovered from inequalities (6.144) and (6.145). But inequality (6.145) is true only for 
those paths $o(t) for which 0.5 _< o 5 1; consequently, inequality (6.152) is also true only for 0.5 5 u 5 1. 

Consider now those paths $@(t)for which 0 5 u 5 0.5. Estimate dY-= 
y - - f ( x )  

for these paths forz - x
d x '  

tc[O, tg']. Evaluating ~ ~ . ~ ( t )for tc[O, ti!:], we have 

Thus, because of inequality (6.7) we obtain 

2c (e +H)x ' 

dx 

Integrating this inequality along path q50.5(t),we see that 

y < 2cx + 2.5c(c + H)x2+ 0.5k. (6.153) 

This inequality is proved only for +o.5(t); however, due to  lemma 3.9 i t  is true for all paths &(t) for which 
0 _< u 5 0.5. From inequality (6.25) and (6.153)we have 

dy- Z - X  0,9ck -x-_____

dx  y - f ( x )  > 0 . 5 k + c x + 2 . 5 c ( c + H ) x 2 - a ( x )  * 
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Since inequality (6.11) takes place for 0 _< x _< 6,from the last inequality by virtue of (6.7) we obtain 

X
0.9 k- c 

(6.154)g>c 
0.625 -. x > 1:44c. 

This inequality is _ue for all paths for which 0 _<a50.5 for td0, $)I. From inequality (6.1 I )  and 
equality (6.32),for 0 5 CJ 5 0.5 

“3
dx 	>1,44C(l -b)cr(x). (6.155). 

On the other hand, from inequality (6.144) which is true for any m [ O ,  11, we see that 

dw-
q + L +0.018 

C 

dx-< c(1-b) 
q + -0.03 

a w .  

Thus, by virtue of q > 0.7, we obtain 

dw­-< 1.1 c ( l  - a ) C + ) .  (6.156)
dx 

From inequalities (6.155) and (6.156) we have 

dw+ dw­
dx dx > 0 , 3 ~ . ! l- 6)hjc. (6.157) 

This inequality is true for all paths &(t) for which 0 _< (T _< 0.5 for 0 5 x 5 6. 

Designate by Azwa the increase of function w,(t) for the crossing of path &(t) on strip 0 5 x 5 6. Inte­
grating inequality (6.157) results in 

Azw, > 0.15c(l - b)h8’. 

Thus, from (6.7) we obtain 

A,wg> 1.5 ~ ( l - - b ) h ( h - ~ ) 8 ~ ,  (6.158) 

this inequality is true only for 0 5 u 5 0.5. 

Consider now the increase of function wo(t) for the passage of path &(t) on strip 0 5 x 5 0.28. Desig­
nate this increase by A,wu so that A2wu = A,w, + A3wa- For this we will consider only those paths &(t) 
for which 0.5 _< u 5 1. From inequality (6.149), true exactly for such u, 
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From equality (6.148) and inequality (6.7), we see that 

B > (k - a ( x ) ) ( ~ ]- p 2 )  > 0.6(k - 0.1). 

Consequently, for 0 5 x 5 0.26 we have 

c ( k + q )  P +  1.8 (C +  e H'I (1-b)e8a(x):
dw+ dw- >- ' [ ' ' 

dx dx 0.6 ( k  -0.1) 

Integrating the las t  inequality and using inequality T ]  5 k, we obtain 

Thus, from (6.152) we write 

A 2 w a > + - c ( l - b ) ( h - - - ) h 8 ~0 35 ' 1 
c. 

-0,08 ck (1 - b )  H 
[P + 1.8 (c + $)HI �282.-o, 

(6.159) 

(6.160) 

(6 . i6i)  

(6.162) 

(6.163) 

The last  inequality has been proved only for 0.5 5D 51. But from (6.158) i t  is true for a l l  ac[O.l]. 

Now estimate the increase of function wo(t) for the passage of path &(t) on strip 6 5x 5 e. Designate 
this increase by A.,w,. From inequality (6.147) and inequality (6.7), the following inequality is obtained: 

A > - 2c(k + T ] ) E .  

Thus, from (6.160) we find the relation 

%--dw- > c ( k + 4E ( 1  -b )  a ( x ) .
dx dx - 0.3 ( k  -0,l) 

is fulfilled for 6 5 x 5 E. Accordingly, from (6.12) we have 

Integrating this inequality from x = 6 to x = E and using (6.6), we obtain 

A,w >---20ck H 
3 ( k  --0.1)--(1--bb)e268. (6.164)Q .  
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Estimate finally the increase of function w,(t) on the interval of time tg’ _< t _< tg) .  Designate this in­
crease by A5wo- Since w,(t) increases for t&g), @], Aswa is larger than the increase of wo(t) on the inter­
val of time tg’ _< t _< tg). If i t  results that t$) > $), then A5wo is larger than the increase of wo(t) on inter­
val [$), tg)]. However, inequality (6.37) is true for x > E .  Integrating this inequality and using (6.39) we 
obtain 

Aswa>-2 (1 -&) I / k 2( 1  +cB)+0,01284. (6.165) 

From inequalities (6.163)-(6.165) and condition (6.10) we obtain 

The las t  inequality contradicts supposition (6.116), and the contradiction obtained proves the lemma. 

Lemma 6.5 

Let inequalities a > 0 and b < 1 be fulfilled; moreover, in a neighborhood of point x = 0, let  function 

a(x) be differentiable and&> 0. Then, if point p lies in plane x = 0 sufficiently close to the origin and ifdx 
t ,  > 0 is such that point +(p, t,) a lso lies in plane x = 0, there occurs inequality 

The assertion of this l emma results because the null solution of system (2.15) is stable in the sense of 
Lyapunov and because of ecpalities (4.98) and (4.99). 

Consider a path +(m, t) of system (2.15), with i ts  initial pointm lying on half-line !x = 0, z = cy, y > 0). 
Let T, be the first instant after t = 0 of the intersection of path +(m, t )  with plane x = 0. If i t  happens that 
x > 0 for t > 0 on path +(m, t), we will say that T, = + W. The following l emma is true. 

Lemma 6.6 

Let inequalities a > 0, b < 1, c2+ b > 0 be fulfilled. Then for all  tc(0, T,) there is fulfilled inequality 

where u is the function introduced by equality (6.68). 

Proof 

Since point m lies on line {x = 0, z - cy], u = 0 on path +(m, t) for t = 0. Thus, from equality (6.69) we 
obtain 
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(6.168) 

on path +(m, t). Since it results that x > 0 and a ( x )  > 0 on the interval of time (0, T,) on path +(m, t), from 
the integral relation (6.168) i t  follows that inequality (6.167) is true on the interval of time 0 < t 5 T,. 

Using the lemmas proved, i t  is not difficult to verify the following theorem. 

Theorem 6.1 

Suppose that conditions a > 0 and 0 5 b < 1 are fulfilled; suppose, moreover, that inequality c 2 1 is 
fulfilled. Let conditions (6.11)-(6.13) be fulfilled; furthermore, in a neighborhood of point x = 0, let func­

tion a(x) be differentiable and&> 0. Finally, for 1x1 5 l d k 2 ( 1+ c') + 0.012, let there take place the in­dx . c  
equality 

f (  - x) = - f(x). (6.169) 

Then system (2.15) has a periodic solution. 

Proof 

In plane x = 0, consider a point q, with coordinates x = 0, y = 0, z = cp; point q ,  with coordinates 
x = 0, y = p, z = cp; and segment M of the straight line {x = 0, z = cpf,included between points q, and q,. 
Suppose that 0 < p < 1 and /3 is so small that inequality (6.166) is fulfilled on the entire segment M. The 
existence of such a p is guaranteed by lemma 6.5. 

Now consider a trapezoid poplqoqlpoin plane x = 0. We will consider all  paths +(l,t )  of system (2.15), 
the initial points of which l ie inside or on the boundary of this trapezoid. Let TI > 0 be the first instant 
after t = 0 of the intersection of path +(1, t )  with plane x = 0. By theorem 3.2, instant Ti exists and is 
finite. On plane yOz of the phase space, introduce polar coordinates by means of equalities y = r cos 8 and 
z = r sin 8. On the trapezoid we give the following two functions of i ts  points: 

By r(1) and +(I) are meant the radius vector and the polar angle of point 1. From theorem 3.3, the reasoning 
of section 3 and the theorem on integral continuity, functions Ar and A8 are continuous. 

From lemma 6.4 it follows that 

M P )  > 0, (6.172) 

when point p l ies on side popl of our trapezoid. 
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, . . ..., .. 

In consequence of inequality (6.166), 

(6.173) 

when point q lies on side qoql of .the trapezoid. 

Further, from lemma 6.6 it  is not difficult to verify that 

AO(m) > 0, (6.174) 

when point m lies on segment plql of the straight line (x = 0, z = cy). 

Finally, let point n lie on segment pogoof axis 0 2 ,  then from theorem 3.3 we have 

AO(n) < 0. (6.175) 

From inequalities (6.172)-(6.175) and the continuity of functions hr and AO, there exists a point 1, inside 
the trapezoid poplqoq,p,  such that 

hr(1,) = AO(1,) = 0. (6.176) 

Consequently, points +(lo, Ti,) are symmetrical to point 1, relative to the origin. 

Note now that from lemma 3.9 and inequality (6.40) all paths +(l, t )  for tA0, Ti] l ie in  the strip 1x1 < 
1- d k 2 ( l  + c2)+ 0.012. But in this strip, as shown by condition (6.169) of the theorem to be proven, the field 
C 

of linear elements defined by system (2.15) is symmetric relative to the origin. Therefore, path +(lo, t )  in­
tersects plane x = 0 a t  point 1, a t  a time following t = Ti,, and thus +(I,, t )  is a path of a periodic motion of 
system (2.15). 

The theorem is proved. 

Corollary 

Suppose that a > 0, 0 5 b < 1 and c 2 1. Suppose further that 

hx 5 a(x) 5 Hx for 0 5 x 5 K6, (6.177) 

0 < a(x) 5 Hx for K6 5 x 5 KE, (6.178) 

~. 
0 <2 ( x )  < ~ 2 4 for KE x Q 7 I/P (1 +c') -t0.0 12 , (6.179) 

where the numbers h, H, 6 and satisfy inequalities (6.2), (6.3), (6.6)-(6.10) and K is an arbitrary positive 
number. Moreover, in a neighborhood of point x = 0, let function a(x) be differentiable and da/dx > 0. 
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Finally, let equality (6.169) take place for ,Ix(5 K\/k'(l + c') + 0.012: Then system (2.15) has a periodic
C 

motion. For proof, the change of variables x = Kx,, y = Ky, and z-=Kz, should be made and theorem 6.1 
should be applied. 

Section 19 

In this section we will consider those cases whichare not covered in theorem 6.1, i.e., the cases when 
a > 0, 0 _< b < 1, c < 1 and when a > 0, b < 0, and c' + b > 0. Here we will show that periodic motions can 
also appear for system (2.15). In these cases, the proof of theorem 6.1 doesnot proceed because we cannot 
prove the continuity of functions h ( 1 )  and AO(1) introduced by equalities (6.170) and (6.171). The continuity 
of these functions can be violated in spite of the theorem on the continuous dependence of the solutions on 
the initial conditions. 

Indeed, supposethat in trapezoid poplqlq,,po there exists a point p such that path +(p, t) proceeds in 
the following way. There exists a point T o> 0 such that x > 0 for tc(0, To) on +(p, t )  and 

Then from the reasoning of section 3, path +(p, t )  is tangent to plane x = 0 for t = To in such a way that i t  
lies in half-space x > 0 for t f To and sufficiently close to T,. It is not difficult to see that a t  point p the 
continuity of functions Ar and A0 are violated. W e  will analyze in detail the behavior of these trajectories. 

In this section as in the preceding, we will suppose that function a(x) satisfies conditions (6.11)­
(6.13). In addition we will suppose that function a(x) a lso satisfies the following conditions. W e  will as­
sume that a(x) is differentiable for 0 <_ x 5 6 and that 

*> o for o _< x < 6. (6.180)dx 

Moreover, we will suppose that 

a(x) < a(6)for 6 < x 5.e .  (6.181) 

Also in this section, we will suppose that inequalities (6.2), (6.3) and (6.'6)-(6.10) are fulfilled. Assume 

u = dk'(1 + c') + 0.012 (6.182) 

and 

(c + bH)(c + h)6 for b < 0 

c(c + h)6 for b 2 0. (6.183) 
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Relative to  numbers 6 and E we will st i l l  suppose that there are fulfilled the inequalities 

(6.184) 

and 

(6.185) 

Now let point p lie inside or on the boundary of trapezoid poplq,qopo. Suppose that an instant of time 
T o  exists such that x > 0 for tc(0, To) on path +(p, t )  and relations x = 0, y = 0 and z > 0 take place for 
t.= Toon $(p, t). Then path +(p, t) i s  tangent to surface x = 0 for t = To. Since z decreases for tc[O, T J 
along path +(p, t )  and since y(+(p, To))= 0, we have 

where w is the function defined by equality (5.38). 

Suppose that path +(p, t )  intersects plane x = 0 for t = r > 0. For this we will consider that r is the 
first instant after t = 0 of the intersection of +(p, t )  with plane x = 0, i.e., we will consider that on path 
$(p, t) there take place the relations 

x(t) 2O for tc[O, T I ,  x(r) = 0, y(7) < 0. (6.187) 

We will show there is fulfilled the inequality 

From the reasoning of chapter 111, path +(p, t )  must proceed in the following way. For an increase of 
time t from 0 it  remains inside domain (x > 0, y - f(x) > 0, z - x > 0) until i t  does not intersect plane z -x=O 
for t = t,. Further, path +(p, t) intersects surface y - f(x) = 0 and goes into domain {x > 0, y - f(x) < 0, 
z - x < 01 for t = t, > t,. Since path +(p, t )  is tangent to plane x = 0 for t = Toand since z($(p, To))> 0 for 
this, then obviously a t, > t, can be found such that path +(p, t )  intersects plane z - x = 0 for t = t,. In this 
case,  if y(t4)< 0 on path +(p, t ) ,  there exists a t,c(t2, t,) such that on +(p, t )  

Y(tJ = 0, (6.189) 

i.e., for t = t,, path +(p, t )  intersects plane y = 0 and goes into the half space of the negative y component. 
If the instant of time t, exists (i.e., if y(t,) < 0), then path +(p, t )  must, for time increasing from t = t,, inter­
sect plane y = 0 one more time for t = t ,  (so that y < 0 for tc(t,, t,) on +(p, t)). In this case it can happen 
that t ,  = To, andthen path +(p, t )  touches plane x = 0 after two intersections with plane z - x = 0. It can 
also happen that t ,  < To, and then +(p, t )  touches plane x = 0 after a larger number of intersections with 
plane z - x = 0. (Note that the number of intersections of path $(p, t )  with plane z - x = 0 on the interval of 
time 0 < t < Tomust be even.) In this way we have 
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O < t l _ < t , < t 3 < t , < t , _ < T o .  (6.190) 

Analogous to the preceding, designate as T, the first instant after t = .Toof the intersection of path 
+(p, t) with plane z - x = 0 and designate as T, the first instant after t = To of the intersection of +(p, t) 
with surface y - f(x) = 0 so that To  < T, _< T,. 

Now consider the points of intersection of path +(p, t )  with plane x = 0; i.e., point +(p, 7). W e  begin to  
move along path +(p, t )  from point +(p, r )  in the direction of decreasing time. If z(+(p, 7)) > 0, then we will 
first be in domain (x > 0, y < 0, z - x > O{; for t = r1  < r ,  path +(p, t )  intersects plane z - x = 0 and goes into 
domain (x > 0, y < 0, z - x < 01. In this domain, along all motions of system (2.15), y increases with de­
creasing time; consequently, a r3 < r,  can be found such that +(p, t )  intersects plane y = 0 and goes into 
domain (x > 0, 0 < y < f(x), z - x < 01 for t = r3. Finally, path +(p, t )  intersects either surface y - f(x) = 0 or 
plane z - x = 0 for t = r,  < r3.  One of two things is possible: on path +(p, t )  i t  results that either 

or 

yb,) - f(x(r,)) IO,z(r2)- X(.,) = 0. (6.192) 

If the possibility characterized by relation (6.191) is realized, then for additional decreases of time, path 
+(p, t )  intersects plane z - x = 0 for t = r1  < T ,  and goes into domain (x > 0, y > f(x), z - x > 0). Finally path 
+(p, t) intersects surface y - f(x) = 0 for t = ro < r l .  In this case,  i t  can happen that To = ro; i t  can also re­
sult that To < r,,. 

In the following w e  will often consider functions y, z ,  w and t on path $(p, t )  as functions of abscissa  
x. 	 In order to avoid multiple values arising for this, introduce the following designations. On interval 
0 _< t 5 t, of path +(p, t )  we will give these functions the index 1 and the sign +, for example, y:(x). On 
interval t, 5 t _< t ,  of path $(p, t ) ,  identify the functions with the index 1 and the sign -, for example, z,(x). 
(The instant of time t ,  also cannot be defined; this happens if  y($(p, t,)) 2 0; then this function is not con­
sidered on interval t, 5 t _< To.) On interval To_< t _< T,, it is given the index 2 and the sign +, for example, 
W;(X). Further, on interval ro _< t 5 r ,  (only if  instants ro and r1  are defined, i.e., if relations (6.191) are 
realized) identify the functions with the index 3 and the sign +, for example, tf(x); and on interval r ,  5 t _< r ,  
the index 3 and the sign -. Since, in the segments considered, x varies monotonically along path $(p, t ) ,  
with these designations we completely preserve the single valuedness. 

Further, the following cases can occur: 

I. On path +(p, t),  X(T,) _< 6. 

11. On path +(p, t) ,  x(r,) > 6. 

W e  will begin the proof of inequality (6.188) with case  11. Evaluate in this case the difference z(p) ­
z(+(p, To)). According to lemma 3.9 we have e 
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on path $(p, t). But for tc(0, tz)  on path $(p, t) thereis fulfilled the inequality 

y fM, (6.194) 

Thus from (6.193) there follows inequality 

For t = 0 > 0, let path $(p, t )  be the first time after t = 0 of the intersection of plane y = 0. It is not diffi­
cult to see that b< T,. By M designate the se t  of those values tc[O, $1 for which on path $(p, t )  there is 
fulfilled the inequality 

dYdt=2 -x <0. (6.196) 

From the definition of b, z($(p, t))  > 0 since z(+(p, To))> 0 for tc[O, $1, and z decreases along $(p, t )  with 
increasing time for tc[O, TJ.  

From equality 	-d t  = - C X - ~ ~ ( X )  it follows that on path +(p, t) for tcM there is fulfilled the inequalitydY 2--x 

(6.197) 

From this inequality and conditions of (6.11)-(6.13), 

dz t 

G 7  ( C + h ) 6  (6.198) 


on path +(p, t) for t N .  Multiplying this inequality by dy/dt, we obtain the following inequality true for tcM: 

Integrating this inequality along path $(p, t) on se t  M we obtain 

(6.199) 

However, on the interval of time [0, $1, points are present in which inequality (6.195) is fulfilled for t = 

and y = 0 on $(p, t). Therefore, the integral standing on the right in inequality (6.199) is less than -f(6). 
But from relation (3.29) and condition (6.1l),f(6) L c8 + ha; therefore, we have 

D 
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Since dt -
< 0 for all te[O,d 1, from the last  inequality we obtain 

3 


or 


Because 8<To, from the las t  inequality we see that 

(6.200) 

Inequality (6.200) is true only in the conditions of case 11. 

One of two possibilities can exist in the conditions of case 11: 11,, relation (6.191) is realized; 11,, re­
lation (6.192) is realized. 

We begin by considering case 11,. In this case the instants ro and r1 are defined as instants of the 
intersection of path +(p, t )  with surface y - f(x) = 0 and plane z - x = 0 respectively. 

For case 11, we will distinguish between the following possibilities: 

Consider the first possibility. From lemma 3.9 we have 

For this, equality x(r,) = x(T,) is possible only when ro = To. Further, from lemma 3.9 on interval 0 < x 5 
~ ( r , ) ,we have 

dz - -cx -bor ( x )  and inequality (6.202) we see that for 0 < x _< x(r,) there is fulfilledFrom equality --
the inequality 

f f x  I Y - j W  
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d z r ’  dz$ 
717;-’dx‘ 

From this inequality and from inequality (6.200) we obtain 

zf(x) - Z h ( X )  > 

for all xQO, x(~J1. 

According to lemma 3.9 we can assert  that inequality 

x(T,) < x(t,) 5 6 < x(T,) 

takes place on path +(p, t). But inequality (6.203) is true for all  xd0, x(~J1;therefore, we can write 

And from inequalities (6.202) and (6.204), we see that 

r 
Y % O , ) )  > y%O,)). 

But by the definition of the instant of time T,, we have 

(6.2 03) 

(6.204) 

(6.206) 

Therefore, from the definition of function w in equality (5.38) and from inequalities (6.205) and (6.206), w e  
obtain 

(6.207) 

But on the interval of time 0 5 t 5 t,, a s  follows from equality (5.39), function w increases along path +(p, t )  
and decreases on the interval of time T, 5 t 5 T,. Therefore, from inequality (6.207) we have 

(6.208) 

(6.209) 

In inequality (5.209) expression wz(x(tl))has sense because of inequality (6.201) and condition 1*. From 
the definition of the instants of time t ,  and T,, the definitions of function w, and inequality (6.208), we see 
that 

From lemma 3.9 and inequality (6.39) inequality y < v is fulfilled on path +(p, t )  for tt[O, TI. Therefore, we 
can write 
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Since y decreases with increasing t ime  along path +(p, t) for te[T,, T2], it follows from inequality (6.210) 
that 

Now we will prove the truth of inequalities 

1w,"
(6) -q(6) > y c2, (6.212) 

If x(t,) = 6, these inequalities coincide with inequalities (6.209) and (6.211). But let x(t,) < 6. From 
equality (6.32) and inequalities (6.202), true for a l l  xc[O, 61, there follows inequality 

for xdxlt,), 61. And from this inequality and inequality (6.209), inequality (6.212) also follows. Analogously, 
from equality (3.7) and inequality (6.211) we obtain inequality (6.213). 

Completely analogously, using lemma 3.9 when ro > To, we will show that 

And from these inequalities and inequalities (6.212) and (6.213) we obtain the following estimates: 

w,'(6) -w; (6) > ;cz, (6.214) 

(6.215) 

Now we will show that inequality 

(6.216) 
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is fulfilled for x&j, 61. In the same way we will prove that on path $(p, t )  there ,isfulfilled inequality 

and with this inequality, also the definition of symbol y:(x) for xe[O, �1. Indeed, yf(6) > f(6) from the defini­
tion of the instant of t i m e  T ~ .  But from condition (6.181), for 6 _< x 5 E there takes place the inequality 

f(x) L f(6) + C(E - 6). (6.218) 

According to this inequality and (6.184), if inequality (6.216) is fulfilled, then inequality (6.217) is also ful­
filled. Thus, inequality (6.216) is proved. This inequality is fulfilled for x = 6, as follows from (6.215); 
therefore, because of the continuity it is also fulfilled for x > 6, but sufficiently close to 6. 

Now suppose that there exists an x*E[~,E] such that 

* - 5-+y,+ (6).F a  

Y,'@ - 4v (6.219) 

Moreover, suppose that x* is the first point in which inequality (6.216) is violated, i.e., suppose that in­
equality (6.216) is fulfilled for xc[6, x*). Because of equality (3.7), on interval 6 < x < x* there is fulfilled 
the inequality 

Using inequalities (6.216) and (6.218) w e  obtain 

Since y$(6) > f(6),consequently 

And thus, from (6.184) we obtain 

dYl+ 5vr 
- + - - F a  

Integrating the last  inequality from x = 6 to x = x*, we have 

- .+ 5wYl (x * )  -yl'(4 > -F("- 6). 
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Therefore, from (6.184) we conclude that 

From this inequality and from inequality (6.215), we obtain 

And this contradicts equality (6.219). The contradiction obtained proves that inequality (6.216) is fulfilled 
for all x@, �1. 

Now estimate the quantity W;(E) below. From equality (6.32), for xc[6 ,  �1, wesee  that 

Thus, from inequalities (6.181), (6.184), (6.216) and (6.218) there follows inequality 

Integrating this inequality from x = 6 to x = 6, because of (6.184) we obtain 

w;'(~)-wF(6)> - ( l - b )  t a  (6.220) 

Below, estimate the quantity w:(E). For the variation of x along path +(p, t )  from 6 to x(t,) and return­
ing from x(t,) to 6 ,  +(p, t )  cannot intersect plane z - x = 0, since z decreases along +(p, t )  and zt(6) < 
conditions l*. Therefore, function w decreases for such a variation of x on path +(p, t). Consequently w e  
have 

since in the opposite case it would result that 

w i  (e) >, 21 V' >, W? ( X  <tlj)>w;'(E). (6.222) 

But inequality (6.37) takes place for x 2 6 .  Integrating this inequality from yT(6) t o  yJe), we obtain 

w t  ( E )  -mi- (e) <(1 -b)  6' (y: (E) -yf (E)).: 

And thus from (6.221) we find that 

(E) -Zer, (.) <2 (1 -b )  V6'. (6.223) 
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Estimate the quantity --(a). From (6.11) we have
4 

-4 
1 

(1 - b)a((6)< I (H-5bif)& 

Consequently, from (6.3) and (6.7), 

1 
4 (1  -b) a ( 8 )  4 -1( H +  c)  6 <0,025. 

Accordingly, from (6.220), (6.223) and (6.185) we obtain 

Iw: ( E )  - a?lT (z) < 3 c2. 

From this inequality and inequality (6.214) we have 

W,(�) > wf(6). 

Therefore, from the definition of function w in equality (5.38) we obtain 

or 

(6.224) 

[yT + pi-(E) - B I Z  + (E -612 

-2 ~ z F( E )  -E J (E - 6) > [y: (a)] + [z; (a) -8)’. 

However, along path 4(p,  t ) ,  z decreases with increasing time on interval [0, 71; consequently, z;(()  > 
zT(6). Moreover, from condition 1* we have zT(6) 5 6, but .;(E) < z:(6); consequently, z,(c) < 6. Therefore, 
from the last inequality we obtain 

[vi- (�)]a > [y3’ ( E ) ] Z  - (E -S)2 -26 ( E  -6). 

Since yf(6) > f(6) and because of (6.2), (6.3) and (6. 6. Then from the last  inequality and 
from inequality (6.6) we find 

and thus we have 
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Therefore, due to (6.7) we obtain the following inequalities: 

0 8 8IY i - (E)  I>CS +-+-, (6.225) 

(6.226) 

But it is clear that yT(e) < f(6); accordingly, from (6.13) we obtain 

yT(6) < CE + a(�)< cc + a4. (6.227) 

We will show that 

0 8  
CE +6‘ <c6 + 2 6 .  (6.228)c 

Due to (6.184) w e  have c (e  - 6) < 6’;therefore, for the proof of inequality (6.228) we need only establish that 

6’+ 64 < 0.88, and this inequality results from (6.7). From inequalities (6.225), (6.227) and (6.228), we 
C 

have yy(r) < 0, and from (6.226) we obtain 

(6.229) 

From this inequality and from equality (6.32) there follows inequality 

for x d 6 ,  �1. Integrating this inequality from x = 8 to x = 6 and using (6.181), we obtain 

Accordingly, from (6.184) and (6.224) we find 

CZ
WT ( E )  -W, (6) <0.057. (6.230) 

From this inequality and inequalities (6.220), (6.223), (6.224) and (6.185),we have 

ZJ; (6) -- (6) <p 1 C2. (6.231) 
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Here, the designation wJ6) is defined s ince,  as mentioned above, zy(6) < z&) < 6 and, consequently, de­
creases with decreasing x for 6 _< x _< �, yJx) and path +(p, t) in this interval does not intersect surface 
y - f(x) = 0. 

From inequalities (6.231) and (6.214) we obtain 

Wy(6) - wf(6) > 0. (6.232) 

As mentioned before, path +(p, t )  intersects plane z - x = 0 for the first time after t = t, for x < 6, i.e., 
x(t,) < 6 on $(p, t). Moreover, from inequality (6.229) i t  follows that y(t4) < 0, and then the instants t ,  and t ,  
are defined on path $(p, t). Because zf(6) < 6, it  is clear that the expression zJ6) is defined and zT(6) < 6 
since z decreases with increasing time for tA0, 71 on path +(p, t). Moreover, i t  is obvious that w decreases 
for tdtf(6), t,(6)] along path +(p, t) since z - x < 0 for such t. Consequently, 

Thus from (6.232) we obtain 

wJ6) > wJ6). (6.233) 

We will show that 

Indeed, from inequality (6.233) we see that 

since 

and zJ6) < 6. From equality (6.32) and inequalities (6.235) and (6.236), for x _< 6 and sufficiently c lose to 6 
there is fulfilled the inequality 

We will show that this inequality is fulfilled for xc[x(t,), 61. Assume to the contrary that there exists a 
X*E[X, (t4), 61 such that 

d w l  d w c  
dx dx I (6.238) 
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for x = x* and inequality (6.237) is fulfilled for xc(x*, SI. From inequalities (6.237) and (6.233) we write 

w,(x*) > w,(x*). (6.239) 

However, since zT(x*) > z,(x*) and zT(x*) _< x*, then from (6.239) yT(x*) < yr(x*) and for x = x* there is ful­
filled inequality 

which contradicts equality (6.238). The contradiction obtained thus proves the fulfillment of inequality 
(6.237) for all  xc[x(t,), SI. From inequalities (6.233) and (6.237), inequality (6.234) results. 

We conceive of the following four cases. 

(a) Suppose that z(+(p, 7))5 0. Then, as is easily seen, w decreases along path +(p, t )  for tc[t;(x(t4), 
71. Consequently, from inequality (6.234) there follows inequality 

on path +(p, t).  But on interval t, 5 t _< t ,  on path +(p, t) inequality z - x > 0 is fulfilled; consequently, w 
increases on this interval along path +(p, t ) ,  and then 

W e  will show that 

Since z decreases along +(p, t) for tc[O, 71, w e  have 

Moreover, from the definition of instant t we obtain 

From these relations and the definition of function w in equality (5.38), inequality (6.242) thus follows. 
Inequality (6.188) follows from inequalities (6.241) and (6.242). 

(p) Suppose that t ,  = T o  and z($(p, 7))> 0. Because of inequality (6.234) and because function w ini 
creases for tr[t4, t J  and decreases for tdt,(x(t,)), 741 along path $(p, t),  there follows inequality 
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We will show that inequaIity 

is fulfilled for all xd0, x(r4)1. Assume to the contrary that there exists a x*c[O, x(r4)]such that inequality 
(6.245) is fulfilled for x~(x* ,x(r4)]and 

WT(X*) = wJx*) (6.246) 

for x = x*. But for xc[O, x(r4)]we have zT(x) > z,(x) 2x. Then from inequality (6.246.) yT(x*) > y;(x*). Thus 
we obtain 

But from the continuity, we will have 

for x > x*, but sufficiently close to x*. The last  inequality in combination with inequality (6.245) contra­
dicts equality (6.246). This contradiction proves that inequality (6.245) is fulfilled for all  xe[O, ~ ( r , ) ]and, 
in particular, that inequality (6.241) is fulfilled for x = 0. A s  above, we obtain inequality (6.188) from in­
equality (6.241). 

( y )  Now let 0 < x(t,) 5 ~ ( r , )and z(+(p, 7)) > 0. In precisely the same way a s  in the preceding case,  we 
will prove that inequality (6.245) is fulfilled for xt[x(t,), x(r4)], and then we will have 

Substituting for function w i ts  expressions in x, y, and z ,  we obtain 

However, by definition of instant t,, wehave y(t5) = 0. Moreover, i t  is clear that z(t,) > zg(x(t,)) 2x(t,). 
Therefore, from the last  inequality we obtain 

Thus, we have 

(6.247) 



Since Iyl and lzl decrease with increasing \time along path +(p, t )  for tdtJx(t5)), 71, from inequality (6.247) 
we obtain inequality 

But 0 < z(t5) < z(p); therefore, 

Cy(7)l’ + [z(r)l’< [z(p)1252W(P). 

This inequality thus proves inequality (6.188). 

Go now to the last  case. 

(6)  Suppose that z(+(p, 7 ) )  > 0 and 0 < ~ ( 7 , )  < x(t5)on path +(p, t). Since function w increases along 
with time on path +(p, t )  on the interval of time [t,, t J ,  from inequality (6.234) there follows the relation 

Rewrite this inequality in the following form: 

Since we have y(t5)= 0 from the definition of instant t,, we can write 

But from the definition of r4 we have ~ ( 7 , )= ~ ( 7 ~ ) ;consequently, we can write 

Since ~ ( 7 , )< x(tJ  by hypothesis, from the last  inequality we obtain 

However, z 2x for te[t,, t d  on path +(p, t); therefore, we have 

Y’(74) + z’(74) < z’(t5). (6.249) 

Since IyI and IzI decrease with increasing time along +(p, t) for tc[r4, 71, from the last  inequality, as in case 
(y) ,  we obtain inequality (6.188). 

Thus, in case 1* inequality (6.182) is fulfilled. 
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Consider now cases 2* and 3*. In these cases ,  as in the proof of inequality (6.208), we establish the 
inequality 

Since function w on interval t 5 T~ of path $(p, t) has  only one maximum which is for t = T ~ ,from (6.250) 
i t  follows that 

w(t,) > WS(6)  + p. (6.251) 

If x(t,) 5 E ,  then, as in case 1*, from inequalities (6.250) and (6.251) we obtain the inequalities 

(6.252) 

and 

But i f  x(t4)> E ,  inequality (6.253) obviously preserves i ts  truth. 

W e  will show that inequality (6.252) is also fulfilled in this case. Indeed, assume to the contrary that 
y(t4)1 0. But t, is the instant of intersection of path +(p, t )  with plane z - x = 0. For t < t, and sufficiently 
close to t,, path $(p, t )  lies in domain (x > 0, z - x < 01. Therefore, as proven above, y(t4)must satisfy in­
equality (6.49). But by hypothesis x(t,) > E ;  therefore, from inequality (6.49), lemma 3.9 and condition (6.13), 
y(t,) < (1- b)a4. Since z - x = 0 for t = t, on $(p, t) ,  then 

1 1w(t,)=-Zy?(t,)<y(l- b)2P. (6.254) 

On the other hand, from (6.253) we have 

Since we are considering only case c z  + b > 0, the las t  inequality contradicts inequality (6.254). Conse­
quently, in the cases considered, inequalities (6.252) and (6.253) are fulfilled. From these inequalities, as 
in case 1*, it  is easy to obtain inequality (6.188). 

In cases 4* and 5*, as in the preceding cases ,  we establish inequalities (6.250)-(6.253). And from 
these inequalities i t  is not difficult to verify inequality (6.188). 

In case 11,, from lemma 3.9 we have 

(6.255) 



Moreover, since z decreases along path $(p, t) for tc[O, 71, we have 

(6.256) 

From these inequalities and the definition of function w, we find 

w;(x(72)) > Wb,) .  (6.257) 

As in case 11,, from lemma 3.9 it is easy to obtain the inequality 

WJ;(Xb2))+ ;c < w:(x(72)). (6.258) 

From these inequalities, as in case 11,, i t  is not difficult to obtain inequality (6.188). 

Now consider case I and introduce the following designations. W e  assume 7’ = 7, i f  relation (6.191) is 
true and 7’ = T~ if relation (6.192) is true. Thus, ~ ( 7 ‘ )- ~ ( 7 ’ )= 0 on path +(p, t). Since, z decreases for 
tc[O, 71 along +(p, t) ,  then for tc[O, t2] we have 

Z(t) > z(7’). (6.259) 

Because z(t,) = x(t,) from the definition of instant t,, from (6.259) w e  obtain 

x(t,) > z(7‘) = x(7’). (6.260) 

Then from the continuity of function x(t) on path +(p, t) ,  w e  can assert  that there exists a t‘c(0, t i )  such that 

x(t’) = X(7‘). (6.261) 

If relation (6.191) is fulfilled, function x(t) on path +(p, t )  for tc[r’, 71 has only one maximum which is for 
t = r2; but if relation (6.192) is fulfilled, then function x(t) decreases along +(p, t )  for tc[r’, 71. Thus from 
the conditions of case I, inequality 

x(t) 5 X(7J 5 6 .  (6.262) 

is fulfilled on +(p, t )  for tc[r‘, 71. From equality (6.261) and lemma 3.9, on path +(p, t )  there is true the in­
equality 

y(t‘) > y(7’), z(t‘) > z(7’ ) .  (6.263) 

Consider function v as defined by equality (4.98). We will show that on path +(p, t )  there is fulfilled 
the inequality 

v(t’) > v(7‘). (6.264) 
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From equalities (4.98) and (6.261) and inequality (6.263), i t  is sufficient to show that for this 

(6.265) 

Following from conditions (6.3) and (6.11), 

(1 - b)a(x(t‘)) < a(x(t’)) + cx(t’) = f(x(t’)). (6.266) 

But t’c[O, t,]; therefore, 

y(t’) 2 f(x(t’)). (6.267) 

Thus, from (6.266) there follows inequality 

y(t’) > (1 - b)a(x(t’)). (6.268) 

If r’ = r l ,  in an analogous manner we obtain 

y(r’)  2 (1 - b)a(x(r’)). (6.269) 

If r‘ = r2 (i.e., if relation (6.192) is realized), then z ( r ’ )  = x(r’) and path $(p, t) lies in domain (z  - x < 01 for 
t > r’, but sufficiently close to 7’. Thus, from inequality (6.49) inequality (6.269) is fulfilled in this case. 
From inequalities (6.268), (6.269) and equality (6.261), inequality (6.265) follows and from it, (6.264) also. 

Since x increases monotonically along $(p, t )  for k [ O ,  t,], for t d O ,  t’] we have 

x I x(t’) = x(7‘) 5 6. (6.270) 

From inequality (6.270), condition (6.180) and equality (4.99), the following inequality results: 

(6.271) 

From inequality (6.262) condition (6.180) and equality (4.99), we obtain 

(6.272) 

From inequalities (6.264), (6.271) and (6.272), there follows inequality 

Since function v and w coincide for x = 0, (6.188) follows from the last  inequality. Thus, inequality (6.188) 
is established. 

Inequality (6.188) permits the following assertion to be proved. 
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Theorem 6.2 

Suppose that conditions a > 0 and b < 1 are fulfilled; in addition, suppose that c2+ b > 0. Let function 
a(x) satisfy conditions (6.11)-(6.13), (6.180) and (6.181), in which numbers h, H, 6 and t satisfy inequalities 

(6.2), (6.3), (6.6)-(6.10), (6.184) and (6.185). Moreover, let equality (6.169) be true for 1x1 _< y .  Then sys-
C 

tem (2.15) has periodic motions. 

Proof 

Let  P be trapezoid poplqlqopo, defined for the proof of theorem 6.1. W e  will move through point ptP of 
trajectory +(p, t) of system (2.15). Let TP)  be such that x(TP)) = 0 and x > 0 for tt(0, T t ) )  on path $(p, t). 
Of course, i t  is possible that such a finite TP)does not exist; i.e., i t  can happen that path +(p, t )  lies in 
half-space (x > O f  for all t > 0; then from theorem 3.1 path +(p, t )  goes to the origin for t + + 00. In this 
case,  we will consider TF)  = + 00 and +(p, TP))  = (0, 0, 0). If path +(p, t )  touches plane x = 0 for t = TP) 
(Le., if y(Tg))  = 0 and z(Tg))  > 0 on the plane), then we will designate by rP the first instant after t = 0 of 
the intersection of path +(p, t )  with plane x = 0. That is ,  we will consider that on +(p, t),x(rp) = 0, y(rp) < 0 
and x(t) ? 0 for tt[O, r P ] .  It can be said that such a rP does not exist (i.e., that path +(p, t )  l ies in half-
space (x ? 01 for t ? 0), thenby theorem 3.1, +(p, t )  goes to  the origin for t + + m; in this ca se  we will say 
that rP = + m and +(p, rP) = (0, 0, 0). If on interval 0 < t < rP, path +(p, t )  touches plane x = 0 not only for 
t = T:), we will designate by TF), T r ) ,  . .. the instants of contact of path +(p, t )  with plane x = 0 for 
t 40 ,  rp). 

As for the proof of theorem 6.1 we introduce the following two functions of the points of trapezoid P: 

(6.273) 

where r(p) and O(p) are the radius vector and the polar angle of point p. Let E be the set  of points of trape­
zoid P on which inequality h ( p )  1 0  is fulfilled and F the set  of points of trapezoid P on which Ar < 0. 
Both of these se t s  are nonempty according to lemmas 6.4 and 6.5. On set  E, both functions Ar(p) and AO(p) 
are continuous. Indeed, let ptE; then y(+(p, TP)))  < 0 since in the contrary case the relation w(+(p, TP)))= 

l zz (+ (p ,  TL ))) < l w ( p )  would hold, andthis inequality is not possible since ptE. From inequality2 
y+(p, Tf)))  < 0 and from the theorem on integral continuity, functions Ar and A0 are continuous on se t  E. 

We will now show that s e t  F is open in P. Let ptF. If y(+(p, TF))) < 0, then from the theorem on 
integral continuity, along with p in F a certain neighborhood of this point is contained. But let y(g5(p, TP)))=O. 
Then �allowing from inequality (6.188), 
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Moreover, since y($(p, Tkk))) = 0 and z($(p, Tik))) > 0, from the decrease of z along path $(p, t) for tc[O, rP], 
we have 

But from the theorem on the continual dependence of the solutions of the initial conditions, on path $(q, t) 
of system (2.15), the initial point qcP of which lies sufficiently c lose to  p, the points $(sfT t ) )  lie arbi­
trarily close to one of points $(p, Tkk)) or $(p, tp ) .  Thus, from inequalities (6.275) and (6.276), s e t  F is 
open in P. 

Since set F is open in P and sinde function Ar is continuous on s e t  E, from lemmas  6.4 and 6.5 there 
exists a continuum K such that Ar(p) = 0 i f  pcK and K has points both on side pogoand on side p l q ,  of trape­
zoid pop,qlqop, But K C E; consequently, function A8 is continuous on K. From lemma 6.6, i t  follows that 

i f  p lies a t  the intersection of K with side p l q l  of trapezoid P. But i f  point p lies on the intersection of K 
with segment poqoof axis  02, as proved above, y($(p, @I)) < 0 and, consequently, 

A8(p) < 0. (6.278) 

From the continuity of function A8 on continuum K and from inequalities (6.277) and (6.278), on K there 
exists a point po such that 

A8(po)= 0. (6.279) 

But from the definition of K we have 

MPO) = 0. (6.280) 

From equalities (6.279) and (6.280), +(pol t )  is a path of periodic motion of system (2.15). 

The theorem is proved. 

Corollary 

Suppose that a > 0, b < 1 .and c2+ b > 0. Suppose further that function a(x) is differentiable for 0 5 
x 5 K6 and there are fulfilled the following inequalities: 

dah x < a ( x ) < H x ,  z>0 for O < x < K 6 ,  (6.281) 

(6.282) 

(6.283) 



-- 

where numbers h, H, S and E satisfy inequalities (6.2), (6.3), (6.6)-(6.10), (6.184) and (6.185), and K is an 

arbitrary positive number. Suppose moreover that equality (6.169) is true for 1x1 5 G. Then system (2.15)
C 

has  a periodic motion. For the proof of this corollary, change values x = Kx,, y = Ky,, z = Kz, and use 
theorem 6.2. 

W e  now note the following circumstance. 

Remark 

In theorem 6.2, number h is a n  arbitrary number greater than l/c; therefore, the range of variation of 

function ~ ( x )given in theorem 4.5 cannot be broadened. That i s ,  whatever the value of X> 1,a function 
C 

U(X) can be found satisfying the inequality 

0 < u(x)x l x x ' f o r  x f 0, (6.284) 

such that system (2.15) will have periodic motions and, consequently, i t s  null solution will not be stable in 
the whole. 

In conclusion, we formulate the following theorem resulting from theorems 4.1-4.4 and 6.2. 

Theorem 6.3 

In order for the null solution of system (2.15) to be globally stable for any function f(x) satisfying the 
generalized Hurwitz conditions, it is necessary and sufficient that the conditions of one of the following 
three cases be fulfilled: 

I. a <0, b>O, 
11. a=o, O < h ( l ,  

as111. .a> 0, b<O, (l--b)a + & S O .  
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Chapter VII. ON THE INSTABILITY OF MOTION AND PERIODIC SOLUTIONS. 
GENERAL CASES 

Here we consider system (2.8) for condition d f 0. For this we direct our attention to those cases in 
chapter IV for which there was no success  in establishing the global stability of the null solution for any 
nonlinear function f(x) satisfying the generalized Hurwitz conditions (2.9)-(2.12). Thus we will consider 
cases 8,  11, 12, 13, 14, 16, 17, 21, and 22. A s  earlier, let numbers A and B be designated by formula 
(4.101) and number k by the formula 

k' = c + dA. (7.1) 

For this, if cases 14, 21 or 22 are fulfilled, we will suppose that inequality 

A' - dA + b > 0 (7.2) 

is true, and if the conditions of case 16 are fulfilled, we will say that there is fulfilled the relation 

Ab - Ak2+ dk' < 0. (7.3) 

For the conditions formulated above imposed on parameters a ,  b, c and d of system (2.8), we will find 
conditions (imposed on nonlinearity f(x)) such that for their fulfillment not a l l  the solutions of system (2.8) 
will go to origin for t + + W. At the s a m e  time we will prove that in the cases considered the Ayzerman 
problem is answered in the negative. And since we proved the global stability for any f(x) for all  the re­
maining cases of system (2.8), we a l so  obtain the necessary and sufficient conditions in order for the null 
solution of system (2.8) to be globally stable for any function f(x) satisfying the GHC. 

Moreover, in this chapter we will find certain sufficient conditions allowing periodic solutions different 
from the equilibrium position for system (2.8). 

Section 20 

In this and the following section, we will exclude case 17 from consideration since it is discussed in 
section 22 of this chapter. 

Following directly from a study of the conditions of the cases considered, A > 0 for all  these cases. 
From inequality (2.43) we have k Z> 0 for all cases studied except case 13. Moreover, k' > 0 in case 13 also 
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for the following reasons: inequality (2.42); d < 0 in case 13; in this case number A is the boundary on the 
left of function f(x)/x for the fulfillment of the GHC. 

As earlier, introduce instead of f(x) a new nonlinearity y(x) by the formula 

Y(X)= f(x) - AX. (7.4) 

In this and the following sections, analogous to  that given in the preceding chapter, we will say  that func­
tion y(x) obeys certain special conditions approximately the s a m e  as those in chapter VI. Suppose that 
function y ( x )  satisfies the following conditions: 

hx2 5 y(x)x 5 Hx2for 0 _< 1x1 5 6, (7.5) 

0 < y(x)x 5 Hx2for 6 5 1x1 5 E ,  (7.6) 

0 < y(x) sign x 5 a4 for 1x1 L E. (7.7) 

We will designate these conditions as conditions E(h, H, 6) or simply as conditions E. In conditions E, the 
quantity E obeys the inequality 

0 < E - 6 i a2, (7.8) 

and the numbers h and H obey the inequality 

H > h > - - kz (dd + ka -b) 
Akl-dkE-AAb . (7.9) 

As in the preceding chapter, we will say that the number 6 is sufficiently small. However, for a simplified 
discourse we will not evaluate quantity 6 since this was given in chapter VI in inequalities (6.7)-(6.10), 
and w e  suppose only that this quantity is sufficiently small. W e  will understand this in the sense  that a 
6,> 0 can be found for fixed h and H, such that the asserted relations will be fulfilled for 6 _< 6,. 

In the following we will frequently use the notation O(8) .  This symbol, asusual ,  will designate the 
quantity for which constants N and 6, can be found such that lO(6')l 5 Nar for 6 5 6,. 

System (2.8) is rewritten in  the notations of (7.4) in the form 

!E= y -Ax - 7 ( x )  , =z -cx - AX -dy (x ) ,dt 
(7.10)z­dz --ax -bAx -by (n). 

As before, in system (7.10) we will substitute the change of variables 

X I  =A2x-Ay +Z,  y ,  Ez-k2X, Z, =ky ,  (7.11) 
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(7.12) 

Then we will have 

5% =-AX, -(A2’,- dA +b)  ( x )dt 

dt = -k z ,  + (k! .- b )  y (x) ,  2=by1- dby (x ) .. 
(7.13) 

In the following we will frequently compare the solutions of system (2.8) with the solutions of that sys­
tem which is obtained if we assume in (2.8) that y(x) = f(x) - Ax = 0, i.e., with the solutions of the system 

In the variables xl, y,, z , ,  this system has the following form: 

(7.15) 

In the following, $(p, t )  will designate those paths of system (7.14) which go through point p of the 
phase space for t = 0. 

It is easy to see that the general solution of system (7.15) has  the form 

x1=xloe-At , y, =ylocos k;f- zl0sin k t ,  (7.16) 
z, =ylosin k t  +zl0cos kf, I 

where x,,, ylo and z,, are the values of functions x,, y,, z ,  for t = 0. 

Let p and q be two points of the phase space and designate the distance between them by (Ip- qll. Let  
$(p, t )  and $(q, t)  be paths of systems (7.10) and (7.14) respectively. We will consider this path on the in­
terval of time 0 5 t < T where T is some fixed number. Then, i t  is obvious that 

II? (PI 4 - + ( %  t)II=O(S).t+’OIIIq--p(I). (7.17) 

Estimate (7.17) because the special form of condition E(h, H, 6) can be improved. 

Lemma 7.1 

Suppose that function y(x) satisfies condition E(h, HI6). Supposefurther that points p and q l ie in domain 
1(.=0, 1 XI 1 48, Y =% H)and IIp - q(l = O(6’). Then for sufficiently smal l  6 the relation 
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(7.18) 

is true for tA0, 5n/2k]. 

Proof 

Directly from formula (7.16) we see that path $(q, t )  of system (7.14) on the interval of time 0 _< t 5 

2k 
intersects plane x = 0 three t imes :  for t = 0, t = ti and t = ti. In this case i t  is easy to see that t' - +

' - k  
o(6)and t i  = &! + O(6). But from estimate (7.17) and the reasoning of section 3 of chapter 111, for suffi­k 
ciently s m a l l  6, path +(p, t )  also intersects plane x = 0 three times on the interval of t ime [O, 5n/2k]: for 

t = 0, t = t ,  and t = t,. For this i t  is clear that t - c+ O(6) and t '-k' - k  - &! + O(6). 

Furthermore, from formula (7.16) on the interval of time [0, ti] path #(q, t )  intersects plane x = E two 
times, for t = T :  and t = T: ,  and also plane x = 26 two times, for t = 8, and t = 8,. It is clear that T: < 8, < 
e, < .:. 

From estimate (7.17) it is not difficult to  conclude that path +(p, t )  of system (7.10)also intersects 
plane x = 6 two times on interval [0, t,], for t = T ,  and t = T,.  Further, from formula (7.16) i t  follows that 
8, = O(6). However, from (7.17), relation (7.18) is fulfilled for tc[O, e,]. According to this estimate, r,c(O, 8,); 
consequently, point +(p, e,) lies in domain (x> �1. From condition E(h, HI 6) and estimate (7.18), relation 
(7.18) is fulfilled from that time when the points of both paths +(p, t )  and #(q, t )  lie in domain (x > �1. But 
from this relation i t  is clear that both of these paths lie in half-space (x> E ]  on the interval of time 8, 
t 5 8,. Now designating by 8, the instant following 8, of the intersection of path #(q, t )  with plane x = -26, 
as above, we will show that 

e, - e, = o(6). 

And thus it follows that relation (7.18) is a l so  fulfilled for 0 5 t 5 8,. 

Continuing further with the s a m e  reasoning, we will prove the lemma. From lemma 7.1 the following 
relations are obtained: 

Lemma 7.2 

Suppose that function y(x) satisfies condition E(h, H, 6) with a sufficiently small  6. Suppose further 

that point p lies in domain n =0, IxlI<<", y = 
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is true where, as earlier, t, is the first instant after t = 0 of the intersection of path +(p, t )  with half-plane 
ix = 0, y > 01. 

Proof 

Directly from formula (7.16) and estimate (7.17), for sufficiently small 6, path +(p, t)  intersects half-
plane (x = 0, y > 0)for t = t,r(O, 5n/2k). Now, as earlier, let ti be the first instant after t = 0 of the inter­
section of path $(p, t)  of system (7.14) with half-plane {x = 0, y > 0). Then from the first of formulas (7.16), 
there exists a positive constant r < 1 such that 

Therefore, the assertion of the lemma also follows from (7.20). 

In the cases considered, introduce the function of the coordinates of the phase space: 

(7.22) 

The t i m e  derivative of this function, taken because of the differential equations of system (7.10) as is 
easily verified, equals 

&= [ ( k a - & ) ( z - R 2 X ) - d ~ ? y j r ( x ) .  (7.23) 

In plane x = 0, consider the following domain: 

Designate i ts  closure by F. Take an arbitrary point prP and consider a path +(p, t )  of system (2.8). If con­
dition E is fulfilled, then following from the preceding reasoning, there exist instants of time 0 < t ,  < t, such 
that points'+(p, t,) and $(p, t2) lie in  plane x = 0; on interval 0 < t < t ,  and t, < t < t,, x preserves sign on 
path +(p, t). Accordingly, assign point prp to  +(p, tz) lying in half-plane {x = 0, y > O f .  Designate by I the 
transformation thus obtained of the plane of domain P into half-plane {x = 0, y > 01. From the uniqueness 
theorem and the theorem on integral continuity, the transformation I is mutually single valued and mutually 
continuous. 

Lemma 7.3 

Suppose that parameters a ,  b, c and d of system (2.8) satisfy one of the three following conditions: 

I. The conditions of one of cases 8, 11, 12 or 13. 
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11. The conditions of one of cases 14, 21 or 22 and inequality 

A 2 - Ad + b > 0. (7.24) 

111. The conditions of case 16 and inequality 

Ab - Ak2+ dk2< 0. (7.25) 

Suppose further than function y(x) = f(x) - Ax satisfies condition E(h, H, 6) with sufficiently s m a l l  6. 
Then there is true relation 

I(P) c P. (7.26) 

Proof 

From relation (4.153) we see thai the inequality 

b - k2- dA < 0 (7.27) 

is fulfilled in the conditions of the lemma. W e  will show, moreover, that inequality (7.25) is always fulfilled 
in the conditions of the lemma. If condition I of our lemma is fulfilled, from (7.27) and d < 0, b - kZ< 0, and 
thus (7.25) a lso follows. 

Suppose that condition I1 of the lemma is fulfilled. If ca se  14 occurs, inequality (4.25) follows im­
mediately because d < 0 and b < 0 in this case. But if case 21 or 22 is realized, then we have A - d > 0 
from (7.24) and inequality (7.25) from k2> 0 and b _< 0. 

Finally, if condition I11 is fulfilled, inequality (7.25) is immediately given. 

According to lemmas 7.1 and 7.2, for the proof of relation (7.26) it is sufficient to prove only the in­
equality 

i f  

X = 0, x11 4a"", 1 (A2+ k 2 )Q w 42 (A' +P),y >0) .  

First  we will prove that inequality 

(7.29) 
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is fulfilled for 

As usual, in inequalities (7.28) and (7.29) t ,  and t, are sequences of the instants of the intersection of path 
+(p, t) with plane x = 0. 

As mentioned before, path +(p, t )  intersects plane x = E twice on the interval of t ime [O, t,], for t = T, 

and t = 7,. It is further clear that +(p, t )  a lso intersects plane x = 6 twice on interval 0 5 t 5 t,. Let t = T, 
and t = T, be a sequence of the intersection of path +(p, t )  with plane x = 6. Then obviously, 0< T, < 7,  < 
T, < T, < t,. 

Calculate the increase of function w along path +(p, t )  for a variation of time from t = 0 to t = t,. Let 
yo and z ,  be the y component and the z component of point p and y(’) and dl)be the corresponding coordi­
nates of point +(p, t,). From the s a m e  definition of point p we have 

Z O  = Ay, + 0 (8”’). (7.30) 

From lemmas 7.1 and 7.2 and formula (7.16) i t  is easy t o  see that 

y(1) = -yo + 0 (a’‘*), z(’)=-zo+ 0(8%). (7.31) 

Evaluate the quantities ‘y and z on path +(p, t )  for tc[O, T,] from the small to the large sequence relative to  6. 
We have 

(7.32) 

Since function y(x) = f(x) - Ax satisfies condition E(h, HI a), from the last  equality and equality (7.30) we 
obtain the following relation which is true on path +(p, t )  for td0,  7 5 :  

2 = A + O ( 8 ) .  (7.33)dx 

Integrating this equality along path +(p, t )  from t = 0 to t = T, we obtain 

y = yo + Ax + 0(2j2). (7.34) 

As from equality 

(7.35) 
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we see that the evaluation 

dx 
= O(6) (7.36) 

is true on path #(p, t )  for tdO, rl]. Integrating this relation along path #(p, t )  for tc[O, rl], we’obtain 

z=Ay,  +O(0ylt) (7.37) 

because of (7.30). 

Now evaluate quantities y and .z on +(p, t )  for t.&r2,t,] in the s a m e  way. F.rom equality (7.32), because 
of equalities (7.30) and (7.31)as before, we obtain (7.33). And from this equality and (7.31), we conclude 
that on path +(p, t) for te[r2, t J there is fulfilled the evaluation 

Analogously, from equality (7.36) we obtain (7.37) and from it, 

(7.39) 

Evaluate the increase of function w along path +(p, t )  for a passing through of the last  strip 0 5 x _< e. 

For this we will consider function w on path +(p, t )  for te[O, rl] and te[r2, tl] a s  functions of the x component. 
For this,  multiple values immediately arise since path +(p, t )  passes  through strip 0 _< x 5 e twice on the in­
terval of time [0, t,]. To avoid this multiple valuedness, we will assign to function w the sign + on time 
interval [0, r l ]  and the sign - on interval [r2, tJ .  Accordingly this will restore the single valuedness. 

Dividing equality (7.23) by the first equation of system (7.10), we obtain 

d~	-- (kl- b ) . Z  -dk’Jy-k3 ( k 2  -b) X 
7 (4. (7.40)

dx - y --Ax -y ( x )  

From this equality and from evaluations (7.34) and (7.37) we come to 

(7.41) 

Similarly, from equality (7.40) and evaluations (7.38) and (7.39), we obtain 

(7.42) 
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- - 

dw+ dw-
Take the difference --- Directly from calculation i t  is easy to  see the truth of the following re­dx  dx 
lations : 

(7.43) 

This evaluation is true on path +(p, t )  for 0 _< x _< E .  

Now evaluate the increase of function w along path +(p, t )  for the passage of the final strip 0 _< x _< 6. 
By supposition we have 

{ p ~  = 0, (x,l _< d2,x 	 1(A2+ k2)_< w 5 2(A2+ k*)).
2 

However, from the definition of function w, we have 

(7.44) 

Thus, from (7.43) and condition E(h, H, a), for sufficiently s m a l l  6 there is true the inequality 

dW 
dx-2-2> a [ ( P A  -AA-dk2) 7 ( x )  

- k2(dA +.k2 -6 )X ]  ( x )  +0 (8'1%)7 (x ) .  (7.45) 

I I /  

Accordingly, because by hypothesis, Ehx _< y(x) 5 Hx for 0 < x 5 6, we obtain 

-k2(dA +k2--b)] hx2+O (8"s) (7.46) 

for xQO, 61. Integrating this inequality from x = 0 to  x = 6, we arrive a t  

A1w> [(k2A-Ab - dk2)h - k2 (dA + k2- b)]hs3 + 0@'la), (7.47) 

where Alw is the increase of function w for the passage of path +(p, t )  on strip 0 5 x 5 6. 

Next, evaluate the increase of function w along path $(p, t )  for the passage of the next strip 6 5 x _< E .  

From (7.43), (7.44) and condition E(h, H, 6) weobtain the inequality 

dw, dw­
__ > 4I t2  (dA +k2-b )  x 7 ( x )  +0(6%). (7.48)

dx dx 

This inequality is true on path +(p, t )  for xc[6, E ] .  Integrating inequality (7.48) from x = 6 to  x = E we ar­
rive a t  
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Here A2w designates the increase of function w for a passage of path +(p, t) on strip 6 < x 5 E. From in­
equality (7.49) and condition (7.8) we obtain 

hZw> o(64). (7.50) 

Finally, evaluate the increase of function w along path +(p, t )  for it[r;, r2]. From formula (7.16), eval­
uation (7.17) and the definition of point p, all coordinates of path +(p, :) on the interval of t ime [0, t,] are 
bounded in absolute value by one and the s a m e  number which is dependent only on pgameters a, b, c and d 
of system (7.10). 

From the definition of the instants of time r1 and r2, x 2 c on path +(p, t )  for tc[rl, r2]; but then from con­
dition (7.7), 0 < y ( ~ )< 64on +(p, t )  for tc[r,, r21. Accordingly, from (7.23) the relation 

i = o(64) (7.51) 

2nis fulfilled on path +(p, t )  for tE[rl, r2]. Further, because of formula (7.16) and evaluation (7.17), r2 - r l  < -.k
And then from (7.51)it follows that 

A , ~= 0(64), (7.52) 

where A,w designates the increase of function w along path +(p, t )  on the interval of time r ,  _< t _< r2. Com­
bining relations (7.47), (7.50) and (7.52) we obtain the evaluation 

AW > g1 [(k2A-Ab -dk2Jh 

-k2(k2  +dA - b)]  ha3+0(a'',), (7.53) 

where Aw is the increase of function w along path +(p, t )  for tc[O, t,]. Thus, from condition (7.9) and in­
equalities (7.25) and (7.27), inequality (7.29) is fulfilled for sufficiently small 6. 

Proceeding further with this s a m e  reasoning for t > t,, we will prove inequality (7.28). And from this 
inequality, as mentioned above, the assertion of the lemma also follows. 

Thus the lemma is proved. 

The assertion of the following theorem results from what was just proved by the lemma. 

Theorem 7.1 

Suppose that the conditions of cases  8, 11, 12 or 13 are fulfilled; suppose moreover that function y ( x )  = 

f(x) - Ax satisfies condition E(h, H, 6) with a sufficiently s m a l l  6; then system (2.8) has solutions which do 
not go to the origin for t + + 00. 

The assertion of this theorem follows from relation (7.26) and the meaning of transformation I. 
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Corollary 

If the conditions of cases 8, 11, 12 or 13 are  fulfilledi the null solution of system (2.8) is not globally 
stable for any f(x) satisfying the GHC (2.27). 

Proof 

We will show first that inequality 

(7.54) 

takes place in the conditions of the cases  considered. W e  have 

b - k2= b - c - dA = dB. (7.55) 

Thus we obtain 

R ? ( B - k’-dA) - k:d (B- .A)  ,< 
A,A b  -Aki + dk2- d (AB + &2) 

and then (7.54) also occurs. 

Now we take an arbitrary function y(x) = f(x) - A x  satisfying condition E(h, H, 6) in which quantities h 
and H obey the inequality 

(7.56) 

and 6 is sufficiently small. Inequality (7.56) is contradictory. Furthermore, from the conditions of E, func­

tion y(x) thus chosen satisfies the GHC 0 <yo<B - A for x f 0. 
X 

Therefore, the assertion of the corollary also follows from theorem 7.1. 

Remarks 

In the conditions of E, h is an arbitrary number satisfying inequality (7.9); therefore, the region of vari­
ation of function y(x) given by theorem 4.16 cannot be broadened. That is ,  whatever the number h, > 
&z ( b  -ka -dA)  
Ab -A&2+ d k y ’  a function y(x) can be found which satisfies inequality 
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0 < y(x)x < h,x2 for x f 0 (7.57) 

such that system (2.8) will have a solution not going to origin for t -++00. 

Theorem 7.2 

Suppose that the conditions of cases 14, 21 or 22 and inequglity (7.24) are fulfilled. Suppose, more­
over, that function y(x) = f(x) - Ax sat isf ies  condition E with a sufficiently smal l  6. Then system (2.8) has  
a solution not going t o  the origin as t + + =. 

Corollary 

Suppose that the conditions of either case 14, 21 or 22 and inequality (7.24) are fulfilled; then the null 
solution of system (2.8) is not globally stable for any functions f(x) satisfying the GHC. 

Proof 

If the conditions of case 21 are fulfilled, then the assertion of the corollary is obvious s ince any func-

Y(X)tion y ( x )  satisfying condition E(h, H, 6) also satisfies the GHC -> 0 for x f 0. 
X 

W e  will show that the inequality 

takes place for the fulfillment of the conditions of case 14 or 22. From the definition of quantities A and kZ, 
we have 

(7.59) 

therefore inequality (7.58) is rewritten as 

(7.60) 

Since b < 0 in the conditions of the cases considered, from (7.60), because of (7.25), we obtain 

kZb2- k4b - dAk2b < - A2bkz+AZk4- Adk4 
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or 

kZ(A2- dA + b)(b - k2) < 0. (7.61) 

The last  inequality results from b < 0 and inequality (7.24). Thus, inequality (7.58) is proven. From 
this inequality, h and H can be chosen such that function y(x) satisfying the conditions E(h, H, a), with a 6 

Y b )as smal l  as is desirable, will a t  the same also satisfy the generalized Hurwitz condition 0 < -< - a - A 
X b 

for x f 0. Therefore, the assertion of the corollary follows from theorem 7.2. 

Remark 

From theorem 7.2 we see that the region of variation of function y(x) given by theorem 4.17 cannot be 

R Y ( b - k ' - d A )widened; i.e., whatever the value h, >Ab- Ak?.-dkl , a function y(x) can be found satisfying inequality 

(7.57) such that system (2.8) will have solutions not going to origin for t + + 00. 

Theorem 7.3 

Suppose that the conditions of case 16 and inequality (7.25) are fulfilled. Suppose, moreover, that 
function y(x) = f(x) - Ax satisfies condition E(h, H, 6)  for sufficiently small 6. Then system (2.8) has  a 
solution not going to the origin for t -3 + m. 

Corollary 

If the conditions of case 16 and inequality (7.25) are fulfilled, then the null solution of system (2.8) is 
not globally stable for any f(x) satisfying the generalized Hurwitz condition (2.35). 

Remark 

In consequence of theorem 7.3, the range of the function given by theorem (4.18) cannot be broadened; 
.,Le., whatever the value of the number 

a function y ( x )  can be found satisfying inequality (7.57) such that system (2.8) has solutions not going to 
the origin for t + + m. 
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Section 21 

In this section we will formulate some conditions for the existence of periodic solutions to system (2.8) 
for d f 0. 

Theorem 7.4 

Let the conditions of either case 8, 11, 12 or 13 be fulfilled. Further, let function y(x) = f(x) - Ax 
satisfy condition E(h, H,  6) with sufficiently s m a l l  6. Suppose, moreover, that a positive X exists such. that 

where 6 is the number figuring in condition E. Then system (2.8) has periodic solutions different from the 
equilibrium position. 

Proof 

As earlier, use p to designate domain (x = 0, Ixl( < a3", w > L ( A Z+ k'), y > 01, where w is the function
2 

defined by equality (7.22). Further, introduce function v for consideration in the formula 

1 1
' u s -' X2f -2 vy;+ vz;2 1 

-tv ( b A  - Ak2 +dk2)J 
X 

( x )  dx, 
(7.63) 

0 

where 

v = A' -dA+b (7.64)
k x - b  -

It is easy to see that v > 0 in the considered cases. Because of the differential equations of system (7.10), 
the time derivative of function v is equal to 

v=-Ax'  1 - v [k2( k 2-b +dA) x 
-(Ab2-Ab - dk2)  ( x ) ]  7 (x ) .  (7.65) 

Take an arbitrary point pcP and let 0, t,, t, be a sequence of instants of the intersection of path +(p, t )  
with plane x = 0. A s  proved above, on the interval of time 0 < t < t,, there exist only two instants of the in­
tersection of path +(p, t )  with plane x = c. Let T~ and T, be these instants; we will then say that T~ < T ~ .  

Because of formula (7.16) and evaluation (7.17) the inequality 
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(7.66) 

will be filled on path +(p, t) if a sufficiently large vo > 2(A2+ k2) is taken and i f  only point p lies on that 
part of curve (x = 0, v = v o {  which is disposed of in the closeddomain P. Designate this arc by 1. Let p be 
an arbitrary point of arc 1; we will calculate the increase Av, of function v along path $(p, t) for a variation 
of t from 0 to t,. From formula (7.65) and condition E, the inequality 

ir < v(Ak2- Ab - dk2)H22 (7.67) 

is fulfilled on $(p, t )  for te[r2, tl] and tc[O, T ~ ] .  Desiqnate by Alv the greater increase in function v along 
path +(p, t )  on the intervals of time [0, rl] and [r2,  t,]; then from (7.67) we obtain 

< ~ ( A k ~ - A b - d k ~ ) f f ~ ~ ~ ( ~ lA ~ W  + t , - ~ z ) .  (7.68) 

From equality (7.65) and condition E(h, H, a), for a sufficiently small 6 on path $(p, t) for t6[r1, r2] ,  

there is fulfilled the inequality 

v < - 7vk2 (k2-b -J- dA) Xy (x). (7.69) 

Consequently, from condition (7.62) of the theorem to be proved, on $(p, t )  for tc[T1, r2] there takes place the 
inequality 

vk'46 <-T (k2- b +dA): (7.70) 

Let Azv be the increase of v on the interval of time [rl, r2]. Integrating inequality (7.70) along + ( p ,  t )  
from t = r1 for t = r2, we have 

By adding inequalities (7.68) and (7.71) and because of (7.66), we obtain 

Av < 0. 

The las t  inequality means that 

V(P) > V(+(P, tl)). 

Using the same reasoning for path $(p, t )  for a variation of t from t ,  to t,, weobtain the inequality 

V(P) > V($(P, , tz)) .  

(7.71) 

(7.72) 

(7.73) 

(7.74) 
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Designate by Q the domain (x = 0, Ix,I < a3”, v < vo, w > 1 ( A 2+ k2), y > 01, and by a i t s  closure. As earlier,2 
we will designate by I the transformation of the closed domain into itself for motions of the path of system 
(2.8). From lemma 7.3 and relation (7.74), we have 

C Q. (7.75) 

Therefore, because of the well-known theorem of Brouwer, in domain Q there is a point q fixed relative to 
transformation I. However, from the meaning of transformation I, path +(q, t )  is a path of a periodic motion 
of system (2.8). 

Thus the theorem is proved. 

Theorem 7.5 

Suppose that the conditions of either case 14, 21 or 22 and inequality (7.24) are fulfilled. Further, let 
function y(x) = f(x) - Ax satisfy condition E(h, H, 6) with sufficiently small 6. Suppose moreover that there 
exists a X > 0 such that condition (7.62) is fulfilled. Then system (2.1) has  a periodic solution different 
from the equilibrium position. 

Theorem 7.6 

Let the conditions of case 16 and inequality (7.25) be fulfilled. Let function y(x) = f(x) - Ax satisfy 
condition E(h, H, 6) with sufficiently s m a l l  6. Suppose, moreover, that a X > 0 exists such that condition 
(7.62) i s  fulfilled. Then system (2.8) has a periodic solution different from the equilibrium position. 

The last  two theorems are proved in the same manner as w a s  theorem 7.4. 

Section 22 

In this section we wi l l  consider case 17 and establish the necessity of the conditions of theorem 4.19. 
For the proof of the necessity of conditions (4.188) and (4.189), suppose that at least one of these condi­
tions is not fulfilled, and we will show that then thereis a path going to infinity for increasing time for sys­
tem (2.8). For definiteness let 

(7.76) 

where, as earlier, y(x) = f(x) - Ax. 
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Due to relation (7.76) there exists a number M > 0 such that 

y(x) < M for x 1 0. 

Assume that 

We will consider two cases. 

I. G = A’ - dA + b 2 0. In this case consider point p with coordinates x = 0, y = yo, z = z,,. 

Let the coordinates of point p satisfy the inequalities 

A s  earlier, let x, = A% - Ay + z .  Then 

ii, 
 From the last  equality we see that on path +(p, t )  there is fulfilled the equality 

where x,, = zo- Ay,. 

We will show that on path +(p, t )  for t 1 0 thereis fulfilled the inequality 

z > 2AM. 

Indeed, for t = 0 this inequality is fulfilled a s  follows from (7.79). 

(7.77) 

(7.78) 

(7.79) 

(7.80) 

(7.81) 

Suppose that it is violated for t = t ,  > 0, and let t ,  be the first instant after t = 0 for which inequality 
(7.81) is violated; i.e., suppose that the following relations are fulfilled: 

z(+(P, t,)) = 2AM (7.82) 

and 

z($(p, t ) )  > 2AM for td0,  t,). 
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We will show that then 

y - Ax > 5. (7.83)
A 

on path +(p, t) for td0,  t J .  Indeed, for t = 0 this inequality is fulfilled. Now assume that there exists a 
t*E(O, tl] such that on path +(p, t )  it occurs that 

z (t*)y (t*)-AX (t*)=7, (7.84) 

and inequality (7.83) is fulfilled on +(p, t) for td0,  t*). But for tQ0, tl], z 22AM by supposition; conse­
quently, 

y - AX 22M > Y(X) 

on path +(p, t )  for tc[O, t*]. Then for such t ,  x monotonically increases along path +(p, t); and therefore, 
x > 0 for tc(0, t*] on +(p, t).  However, by hypothesis, G 20; from this and from (7.80), x1 < 0 occurs for 
td0,  t*] on trajectory +(p, t). And this a lso so  that inequality (7.83) is fulfilled for tc[O, t*], which contra­
dicts equality (7.84). The contradiction obtained thus proves that inequality (7.83) is fulfilled on path 
+(p, t )  for all tdO, tll. 

dzHowever, from equality n.r -= y --A.r -y ( X I  
we obtain 

(7.85) 

on +(p, t )  for tc[O, tl]. And thus, from (7.82) and (7.83) we have 

(7.86) 

on path +(p, t )  for td0,  tl]. Integrating this inequality along path +(p, t )  on the interval of time 0 5 t 5 t,, 
we obtain 

bJ(tJ-zo>---M '  

Accordingly, from (7.79) we establish that 

z(tl) > 2AM. (7.87) 

This inequality contradicts relation (7.82). The contradiction obtained thus proves that inequality (7.81) is 
fulfilled on path $(p, t )  for all  t 2 0. 
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Since A > 0 and M > 0, from inequality (7.81) path $(p, t )  doesnot go to the origin. Consequently, 
global stability is absent in the case considered. 

11. 	 G < 0. In this case,  consider point p with coordinates x = 0, y = yo, z = zo, and let  

ZO = Ay, >2dM +(6- G )aJ 
(7.88) 

We will show that the inequality 

y - AX > 2M (7.89) 

is fulfilled on path +(p, t )  for t 20.  Indeed, this inequality is fulfilled for t = 0, as follows from (7.88). 

Suppose that i t  is violated for t = t ,  > 0, and let t ,  be the first instant after t = 0 for which inequality 
(7.89) is not fulfilled; i.e., suppose that on path +(p, t )  there results 

and inequality (7.89) is fulfilled on +(p, t) for tr[O, t,). 

dz -by (XI we obtainFrom equality 
dX 
-= y - A ~ x - y ( ? )  

and thus, because of (7.90), we arrive at  

(7.91) 

on path +(p, t )  for tr[O, t,]. Integrating this inequality along path +(p, t )  on the interval of time 0 5 t 5 t,, 
we have 

And thus, from (7.88) we obtain 

z (t,)>2AM -zGJ . 

(7.92) 

(7.93) 

dxNow return again to e q u a l i t y 2  = - Ax, - Gy(x). From this equality and because of (7.88), we obtaindt 
for path +(P, t )  
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(7.94) 

Consequently, from (7.89), as in the preceding case,  we establish that inequality x1 2 0 is fulfilled on path 
+(p, t )  for tdo,  tll. 

dxDivide equality -,= - Ax, - Gy(x)  by the first equation of system (2.8) to  obtaindt 

Accordingly, because x, L 0 on path +(p, t) for td0, tl], we obtain 

on +(p, t )  for tr[O, tJ .  

Due to (7.89), the last  inequality gives 

(7.95) 

on path +(p, t )  for t40,  til .  

By integrating the last  inequality, we obtain 

However, x,(O) = 0 because of (7.88). Therefore, for path +(p, t),  from the last  inequality w e  obtain 

(7.96) 

Thus, from (7.93) w e  obtain 

A (Ax  (tl)-y (t,))+2 A M  - <-GJ 

or y(t,) - Ax(t,) > 2M on path +(p, t). Thelast  inequality contradicts relation (7.90). The contradiction ob­
tained thus proves that relation (7.89) is fulfilled on path +(p, t )  for t Z 0. Accordingly, path $(p, t) does 
not go t o  the origin. Consequently, global stability is not present in this case. 

Thus the following theorem is established. 
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Theorem 7.7 

Suppose that the conditions of case 17 arefulfilled; then, for the trivial solution of system (2.8) to  be 
globally stable in the whole, i t  is necessary and sufficient that the following conditions be fulfilled: 

and 

Corollary 

If the conditions of case 17 are fulfilled, then the null solution of system (2.8) is not globally stable 
for any f(x) satisfying the generalized Hurwitz conditions (2.36). 
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CONCLUSIONS 

The problem which is solved in the present work consists of the following. For what values of the 
parameters aij is the null solution of the system of three differential equations 

globally stable for any nonlinearity f(x) satisfying the generalized Hurwitz ccnditions? In other words, i t  is 
required to ascertain for what values of a;i is the question of Ayzerman's problem answered in the affirma­
tive. This problem is studied in this work in a comprehensive way. The following results are obtained. 

If a22+ a33= 0, system (2.1), by a change of variables, is put into the form 

dt  - y  - f ( x ) ,  :9-
d t

e- dt -2 -x ,  e= -ax -6f(x). (2.15) 

For the null solution of system (2.15) to be globally stable for any nonlinearity f(x) satisfying the general­
ized Hurwitz conditions, i t  is necessary and sufficient that one of three conditions be fulfilled: 

I. a < 0 ,  . b > O ,  
11. a = 0 ,  O < b < l ,  

111. a >0, a< 0, a2 + b < O .  

But if azz+ a33f 0, then system (2.1) is put into the form 

For the null solution of system (2.8) to be globally stable for any nonlinearity f(x) satisfying the gen­
eralized Hurwitz conditions, i t  is necessary and sufficient that one of the following conditions be fulfilled: 

I. The conditions of cases 9, 10, 15, 18, 19 or 20. 
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11. The conditions of cases  14, 21 or 22 and the inequality 

A 2 - Ad + b _< 0. 

111. 	 The conditions of case 16 with inequality 

Ab - Ak2 -+ dk2 20. 
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